

Vince:

● Initial assignment should be vars (with propagation to specialization), but there
aren’t any in the libs.

● Vars “propagate” to other features. Discard when we didn’t get to bidirectional
var/nonvar combination (see emails with Ed).

● Var/nonvar
○ Features on nonoccs become nonvars on occ that “aggregate” vars.

■ Some lib readonlies might just as well be nonvars.
■ Some nonvars (eg, steps) might

○ Nonvars on occs accompanied by vars
■ Eg, steps (nonvar) and currentSteps (var). Likely apply to “root”

features.
● Ends

○ See previous.
○ Might be able to move Link readonlies to LinkObject.

Conrad:

● All occ features are vars, except the exceptions (which are alot).

Joint:

● Not likely to finish varying the libs.
● Not good to do it partially bc people will think the unmarked ones are

intentionally nonvars.
● Validation of taxonomic between vars and nonvars unexamined.

1. Features of non (don’t specialize, aren’t disjoint with) occurrence classes
Note: Features on nonoccurrence classes that should be vars when specialized to
occurrences (including "top-level" features) require a constraint on Occurrence to make
them vars.

1.1. Readonly features
Must be vars when specialized to occurrence classes (unless they're intended to be
features only of lives).

 Links::Link:participant:Anything[2..*] nonunique ordered;
 Links::BinaryLink::source/target: Anything[1] nonunique subsets participant;
 Another data point for the JIRA discussion on participants as (non) vars.

 Clocks::universalClock:UniversalClockLife[1]
 Observation::defaultMonitor[1] : DefaultMonitorLife
 SpatialFrames::feature defaultFrame : DefaultFrameLife[1]
 Above are domain Anything ("top level").
 Must be const to prevent deleting the (single) *Life, then
 immediate recreating and "resetting" feature (logically
 possible).

1.2. "Root, top-level" features on non-occurrence classes
All intended to "change" over time when specialized to occurrence classes.

 Base::things: Anything [1..*] nonunique
 Base::dataValues: DataValue[0..*] nonunique subsets things
 Base::naturals: ScalarValues::Natural[0..*] subsets dataValues

 //Can these change dynamically?
 Base::zeroOrOne [0..1] (multiplicity)
 Base::oneToMany [1..*] (multiplicity)
 Base::zeroToMany [0..*] (multiplicity)

 Links::links: Link[0..*] nonunique subsets things
 Links::binaryLinks: BinaryLink[0..*] nonunique subsets links
 Links::selfLinks: SelfLink[0..*] nonunique subsets binaryLinks

Other features on non-occurrence classes that should be vars when
specialized to occurrences

 Not
 Base::Anything::self: Anything[1] subsets things chains things.that
 Base::things::that : Anything[1]
 Links::*

2. Features of occurrence classes

2.1. Readonly features
Are these intended to be features only of lives?

 Transfers::Transfer:isInstant/isMove/isPush: Boolean[1]
 StatePerformances::StatePerformance:incomingTransitionTrigger : MessageTransfer [0..1]
default null

2.2. "Root" features on occurrence classes

 Metaobjects::feature metaobjects : Metaobject[0..*] :> objects
 Objects::objects: Object[0..*] nonunique subsets occurrences {
 Objects::linkObjects: LinkObject[0..*] nonunique subsets links, objects intersects
links, objects {
 Objects::binaryLinkObjects: BinaryLinkObject[0..*] nonunique subsets binaryLinks,
linkObjects

 Performances::, Transfers:: top-level features, all for steps,
 exprs, transfers, flows. I figure these are non-vars (at least
 for steps, transfers, and flows, since their specializations will
 be linked by successions).

2.3. Other features on occurrence classes that should be vars
Features specializing vars must be vars (omitted here).

 //Can these change dynamically?
 Metaobjects::Metaobject::annotatedElement:Element[1..*]
 Metaobjects::SemanticMetadata::redefines annotatedElement : Type[1]

 Occurrences::occurrences: Occurrence[0..*] nonunique subsets things;
 Occurrences::earlierFirstIncomingTransferSort : IncomingTransferSort

 Clocks::Clock::currentTime:NumericalValue[1]

 Occurrences::Occurrence::suboccurrence
 Root for composition semantics.

 Occurrences::Occurrence:: (purely) Space relations between occurrences
 These'll typically change over time, tho they can also relate things
 happening at separate times (ie, aren't always time-aligned).

 ?? (Might be const)
 Occurrences::incomingTransfersToSelf subsets incomingTransfers {
 Occurrences::Occurrence::outgoingTransfersFromSelf subsets outgoingTransfers
 Occurrences::Occurrence::incomingTransferSort
 Occurrences::Occurrence::isDispatch : Boolean[1] default false
 Occurrences::Occurrence::dispatchScope: Occurrence [1] default self;
 Occurrences::Occurrence::runToCompletionScope: Occurrence [1] default self;

 Objects::Object::involvingPerformances: Performance[0..*] subsets performances
 (specialized by enactedPerformances)
 Steps, but only bc they're typed by performances. Linkable by successions?

 LinkObjects

 ??
 "Root" Performances::Performance

 ??
 SemanticMetadata::baseType : Type[1]
 Occurrences::Occurrence::localClock:Clock[1] default universalClock
 Should snapshot always use the clock of their life? If not, I
 guess this could be a var.
 Occurrences::Occurrence:incoming/outgoingTransfersTo/FromSelf

 Not vars
 Occurrences::Occurrence::Time relations between occurrences
 Intended for the entire time of the occurrence
 Clocks::Clock::timeFlowConstraint
 Already written against snapshots (simpler as var)
 Observation::*
 SpatialFrames::*

	1. Features of non (don’t specialize, aren’t disjoint with) occurrence classes
	1.1. Readonly features
	1.2. "Root, top-level" features on non-occurrence classes

	2. Features of occurrence classes
	2.1. Readonly features
	2.2. "Root" features on occurrence classes
	2.3. Other features on occurrence classes that should be vars

