
Annex F

Package URL specification v1 (Normative)

25 Introduction

The Package URL core specification defines a versioned and formalized format, syntax, and rules used to repre-
sent and validate package URLs.

A package URL or purl is an attempt to standardize existing approaches to reliably identify the location of soft-
ware packages.

A purl is a URL string used to identify the location of a software package in a mostly universal and uniform way
across programming languages, package managers, packaging conventions, tools, APIs and databases.

Such a package URL is useful to reliably reference the same software package using a simple and expressive
syntax and conventions based on familiar URLs.

26 Syntax definition

purl stands for package URL.

A purl is a URL composed of seven components:

scheme:type/namespace/name@version?qualifiers#subpath

Components are separated by a specific character for unambiguous parsing.

The definition for each components is:

• scheme: this is the URL scheme with the constant value of “pkg”. One of the primary reason for this single
scheme is to facilitate the future official registration of the “pkg” scheme for package URLs. Required.

• type: the package type or package protocol such as maven, npm, nuget, gem, pypi, etc. Required.
• namespace: some name prefix such as a Maven groupid, a Docker image owner, a GitHub user or organi-
zation. Optional and type-specific.

• name: the name of the package. Required.
• version: the version of the package. Optional.
• qualifiers: extra qualifying data for a package such as an OS, architecture, a distribution, etc. Optional and
type-specific.

• subpath: extra subpath within a package, relative to the package root. Optional.

Components are designed such that they form a hierarchy from themost significant on the left to the least signif-
icant components on the right.

A purl is a valid URL and URI that conforms to the URL definitions and specifications in RFC 3986 https://datatr
acker.ietf.org/doc/html/rfc3986.

2024-08-12 18:53 197

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986

SPDX v3

A purlmust not contain a URL Authority i.e. there is no support for username, password, host and port compo-
nents. A namespace segment may sometimes look like a host but its interpretation is specific to a type.

The purl components are mapped to the following URL components:

• purl scheme: this is a URL scheme with a constant value: pkg
• purl type, namespace, name and version components: these are collectively mapped to a URL path
• purl qualifiers: this maps to a URL query
• purl subpath: this is a URL fragment

27 Character encoding

For clarity and simplicity a purl is always an ASCII string. To ensure that there is no ambiguity when parsing
a purl, separator characters and non-ASCII characters must be encoded in UTF-8, and then percent-encoded as
defined in RFC 3986 https://datatracker.ietf.org/doc/html/rfc3986.

Use these rules for percent-encoding and decoding purl components:

• the type must NOT be encoded and must NOT contain separators
• the #, ?, @ and : characters must NOT be encoded when used as separators. They may need to be encoded
elsewhere

• the : scheme and type separator does not need to andmustNOTbe encoded. It is unambiguous unencoded
everywhere

• the / used as type/namespace/name and subpath segments separator does not need to and must NOT be
percent-encoded. It is unambiguous unencoded everywhere

• the @ version separator must be encoded as %40 elsewhere
• the ? qualifiers separator must be encoded as %3F elsewhere
• the = qualifiers key/value separator must NOT be encoded
• the # subpath separator must be encoded as %23 elsewhere
• All non-ASCII characters must be encoded as UTF-8 and then percent-encoded

It is OK to percent-encode any purl components, except for the type. Producers and consumers of purl data must
always percent-decode and percent-encode components and component segments as explained in the “How to
produce and consume purl data” section.

28 Rules for each component

A purl string is an ASCII URL string composed of seven components.

Some components are allowed to use other characters beyond ASCII: these components must then be UTF-8-
encoded strings and percent-encoded as defined in the “Character encoding” section.

The rules for each component are:

28.1 Rules for scheme

• The scheme is a constant with the value “pkg”
• Since a purl never contains a URL Authority, its schememust not be suffixedwith double slash as in pkg://
and should use instead pkg:.

• purl parsers must accept URLs such as ‘pkg://’ and must ignore the ‘//’.
• purl builders must not create invalid URLs with such double slash ‘//’.
• The scheme is followed by a ‘:’ separator.
• For example, the twopurlspkg:gem/ruby-advisory-db-check@0.12.4 andpkg://gem/ruby-advisory-db-check@0.12.4
are strictly equivalent. The first is in canonical formwhile the second is an acceptable purl but is an invalid
URI/URL per RFC3986.

198 2024-08-12 18:53

https://datatracker.ietf.org/doc/html/rfc3986

28. Rules for each component

28.2 Rules for type

• The package type is composed only of ASCII letters and numbers, ., + and - (period, plus, and dash).
• The type cannot start with a number.
• The type cannot contain spaces.
• The type must not be percent-encoded.
• The type is case insensitive, with the canonical form being lowercase.

28.3 Rules for namespace

• The optional namespace contains zero or more segments, separated by slash /.
• Leading and trailing slashes / are not significant and should be stripped in the canonical form. They are
not part of the namespace.

• Each namespace segment must be a percent-encoded string.
• When percent-decoded, a segment must not contain a slash / and must not be empty.
• A URL host or Authority must NOT be used as a namespace. Use instead a repository_url qualifier. Note
however that for some types, the namespace may look like a host.

28.4 Rules for name

• The name is prefixed by a slash / separator when the namespace is not empty.
• This slash / is not part of the name.
• A name must be a percent-encoded string.

28.5 Rules for version

• The version is prefixed by a at-sign @ separator when not empty.
• This at-sign @ is not part of the version.
• A version must be a percent-encoded string.
• A version is a plain and opaque string. Some package types use versioning conventions such as semver for
NPMs or nevra conventions for RPMS. A type may define a procedure to compare and sort versions, but
there is no reliable and uniform way to do such comparison consistently.

28.6 Rules for qualifiers

• The qualifiers string is prefixed by a ? separator when not empty.
• This ? is not part of the qualifiers.
• This is a string composed of zero or more key=value pairs each separated by an ampersand &. A key and
value are separated by an equal = character.

• These & are not part of the key=value pairs.
• Each key must be unique within the keys of the qualifiers string.
• A value cannot be an empty string; a key=value pair with an empty value is the same as no key/value at all
for this key.

• Each key must be composed only of ASCII letters and numbers, ., - and _ (period, dash and underscore).
• A key cannot start with a number.
• A key must NOT be percent-encoded.
• A key is case insensitive, with the canonical form being lowercase.
• A key cannot contain spaces.
• A value must be a percent-encoded string.
• The = separator is neither part of the key nor of the value.

28.7 Rules for subpath

• The subpath string is prefixed by a # separator when not empty.
• This # is not part of the subpath.
• The subpath contains zero or more segments, separated by slash /.

2024-08-12 18:53 199

SPDX v3

• Leading and trailing slashes / are not significant and should be stripped in the canonical form.
• Each subpath segment must be a percent-encoded string.
• When percent-decoded, a segmentmust not contain a /, must not be any of .. or ., andmust not be empty.
• The subpath must be interpreted as relative to the root of the package.

29 Known types

There are several known purl package type definitions. The current list of known types is: alpm, apk, bitbucket,
bitnami, cargo, cocoapods, composer, conan, conda, cpan, cran, deb, docker, gem, generic, github, golang,
hackage, hex, huggingface, luarocks, maven, mlflow, npm, nuget, oci, pub, pypi, qpkg, rpm, swid, and swift.

The list, with definitions for each type, is maintained in the file named PURL-TYPES.rst in the online repository
https://github.com/package-url/purl-spec.

30 Known qualifiers key/value pairs

Qualifiers should be limited to the bare minimum for proper package identification, to ensure that a purl stays
compact and readable inmost cases. Separate external attributes stored outside of a purl are the preferredmech-
anism to convey extra long and optional information. API, database or web form.

The following keys are valid for use in all package types:

• repository_url is an extra URL for an alternative, non-default package repository or registry. The default
repository or registry of each type is documented in the “Known types” section.

• download_url is an extra URL for a direct package web download URL.
• vcs_url is an extra URL for a package version control system URL.
• file_name is an extra file name of a package archive.
• checksum is a qualifier for one ormore checksums stored as a comma-separated list. Each item in the list is
in formof algorithm:hex_value (all lowercase), suchassha1:ad9503c3e994a4f611a4892f2e67ac82df727086.

31 How to produce and consume purl data

The following provides rules to be followed when building or deconstructing purl instances.

31.1 How to build purl string from its components

Building a purl ASCII string works from left to right, from type to subpath.

To build a purl string from its components:

1. Start a purl string with the “pkg:” scheme as a lowercase ASCII string

2. Append the type string to the purl as a lowercase ASCII string

3. Append / to the purl

4. If the namespace is not empty:

1. Strip the namespace from leading and trailing /
2. Split on / as segments
3. Apply type-specific normalization to each segment, if needed
4. Encode each segment in UTF-8-encoding
5. Percent-encode each segment
6. Join the segments with /
7. Append this to the purl

200 2024-08-12 18:53

31. How to produce and consume purl data

8. Append / to the purl

5. Strip the name from leading and trailing /

6. Apply type-specific normalization to the name, if needed

7. Encode the name in UTF-8-encoding

8. Percent-encode the name

9. Append the percent-encoded name to the purl

10. If the version is not empty:

1. Append @ to the purl
2. Encode the version in UTF-8-encoding
3. Percent-encode the version
4. Append the percent-encoded version to the purl

11. If the qualifiers are not empty and not composed only of key/value pairs where the value is empty:

1. Append ? to the purl
2. Discard any pair where the value is empty
3. Encode each value in UTF-8-encoding
4. If the key is checksum and there are more than one checksums, join the list with , to create the quali-

fier value
5. Create each qualifier string by joining the lowercased key, the equal = sign, and the percent-encoded

value
6. Sort this list of qualifier strings lexicographically
7. Join this list of sorted qualifier strings with &
8. Append this string to the purl

12. If the subpath is not empty and not composed only of empty, ., and .. segments:

1. Append # to the purl
2. Strip the subpath from leading and trailing /
3. Split the subpath on / as a list of segments
4. Discard empty, ., and .. segments
5. Encode each segment in UTF-8-encoding
6. Percent-encode each segment
7. Join the segments with /
8. Append this string to the purl

31.2 How to parse a purl string to its components

Parsing a purl ASCII string into its components works by splitting the string on different characters.

To parse a purl string in its components:

1. Split the purl string once from right on #, if present; the left side is the remainder.

2. If the right side is not empty, it contains subpath information:

1. Strip it from leading and trailing /.
2. Split this on / in a list of segments.
3. Discard empty, ., and .. segments.
4. Percent-decode each segment.

2024-08-12 18:53 201

SPDX v3

5. UTF-8-decode each of these.
6. Join segments with /.
7. This is the subpath.

3. Split the remainder once from right on ?, if present; the left side is the remainder.

4. If the right side is not empty, it contains qualifiers information:

1. Split it on & in a list of key=value pairs.
2. Split each pair once from left on = in key and value parts.
3. The key is the lowercase left side.
4. Percent-decode the right side.
5. UTF-8-decode this to get the value.
6. Discard any key/value pairs where the value is empty.
7. If the key is checksum, split the value on , to create a list of checksums.
8. This list of keys/values is the qualifiers.

5. Split the remainder once from left on :; the right side is the remainder.

6. The left side lowercased is the scheme. It should be exactly “pkg:”.

7. Strip the remainder from leading and trailing /.

8. Split this once from left on /; the right side is the remainder.

9. The left side lowercased is the type.

10. Split the remainder once from right on @, if present; the left side is the remainder.

11. If the right side is not empty, it contains version information:

1. Percent-decode the string.
2. UTF-8-decode this.
3. This is the version.

12. Split the remainder once from right on /, if present; the left side is the remainder.

13. The right side contains name information.

14. Percent-decode the name string.

15. UTF-8-decode this.

16. Apply type-specific normalization, if needed.

17. This is the name.

18. If the remainder is not empty, it contains namespace information:

1. Split the remainder on / to a list of segments.
2. Discard any empty segment.
3. Percent-decode each segment.
4. UTF-8-decode each of these.
5. Apply type-specific normalization to each segment, if needed.
6. Join segments with /.
7. This is the namespace.

202 2024-08-12 18:53

32. Examples

32 Examples

The following list includes some valid purl examples:

• pkg:bitbucket/birkenfeld/pygments-main@244fd47e07d1014f0aed9c
• pkg:deb/debian/curl@7.50.3-1?arch=i386&distro=jessie
• pkg:gem/ruby-advisory-db-check@0.12.4
• pkg:github/package-url/purl-spec@244fd47e07d1004f0aed9c
• pkg:golang/google.golang.org/genproto#googleapis/api/annotations
• pkg:maven/org.apache.xmlgraphics/batik-anim@1.9.1?packaging=sources
• pkg:npm/foobar@12.3.1
• pkg:nuget/EnterpriseLibrary.Common@6.0.1304
• pkg:pypi/django@1.11.1
• pkg:rpm/fedora/curl@7.50.3-1.fc25?arch=i386&distro=fedora-25

33 Original license

This specification is based on the texts published in the https://github.com/package-url/purl-spec online repos-
itory. The original license and attribution are reproduced below:

Copyright (c) the purl authors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of
the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUTOFOR IN CONNECTIONWITHTHE SOFTWAREORTHEUSEOROTHERDEALINGS INTHE SOFT-
WARE.

2024-08-12 18:53 203

