
 
System Package Data Exchange (SPDX), v3.0 – beta 1                                                                                                 15  

8 Core Profile 
Summary 

 
The basis for all SPDX profiles. 

 
Description 

 
The Core namespace defines foundational concepts serving as the basis for all SPDX-3.0 profiles. Figure 5 below shows 
the logical model for Core profile, for the Software profile, and the non-element classes, enumerations, and data types for 
both. 

 
 
 
 

Legend 
 

Italics - abstract, you must... 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9 – Core model profile, non-element classes, enumerations, and single data types 

 

   

  

  

 

 

  

   

  
 

 

  

  

  
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

 
 

  
 

  
 

 
 

 
 

  
  

 

 

 
 

 
 

 

 
 

 
 

 
 

 
  

  
 

 

  
 

 
 

 

 

    

    

 
 

 

 

  

 

 
 

 
 

 
 

 
 
 
 
 

 

 
 

 

 
 

 
 

 
 
 

 

 
 

 
 

 

 



 
System Package Data Exchange (SPDX), v3.0 – beta 1                                                                                                 61  

9 Software Profile 
Summary 

Everything having to do with software. 

Description 

The Software namespace defines concepts related to software artifacts. Figure 6 below shows the logical model for Core 
profile, for the Software profile, and the non-element classes, enumerations, and data types for both. 

Metadata 
 

 
 
 

Legend 

Italics - abstract, you must... 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10 – Software Model profile, non-element classes, enumerations, & single data types 

profile Core 

 
Element Classes 

+ spdxId: anyURI[1] 

+ name: String[0..1] 

+ summary: String[0..1] 

+ description: String[0..1] 

+ comment: String[0..1] 

+ creationInfo: CreationInfo[1] 

+ verifiedUsing: IntegrityMethod[0..*] 

+ externalRef: ExternalRef[0..*] 

+ externalIdentifier: ExternalIdentifier[0..*]  
  

+ extension:/Extension/Extension[0..1]  
  

 
 

 
 

Bundle 

+ originatedBy: Agent[0..*] + context: String[0..1] 

+ suppliedBy: Agent[0..1] 

+ builtTime: DateTime[0..1] 
 
+ releaseTime: DateTime[0..1] 
 
+ validUntilTime: DateTime[0..1] 
 
+ standardName: String[0..*] 
 
+ supportLevel: SupportType[0..*] 

profile Software 
SoftwareArtifact 

 
+ gitoid: anyURI[0..2] Sbom 

+ primaryPurpose: SoftwarePurpose[0..1] + sbomType: SbomType[0..*] 

+ additionalPurpose: SoftwarePurpose[0..... 
 
+ copyrightText: String[0..1] 

 
+ attributionText: String[0..*] 

Snippet File Package 

+ byteRange: PositiveIntegerRange[0..1]  + name: String[1] + packageVersion: String[0..1] 

+ lineRange: PositiveIntegerRange[0..1] + contentType: MediaType[0..1] + downloadLocation: anyURI[0..1] 

+ snippetFromFile: File[1] + isDirectory: Boolean[0..1] + packageUrl: anyURI[0..1] 

+ homePage: anyURI[0..1] 

+ sourceInfo: String[0..1] 

Bom 

+ imports: ExternalMap[0..*] 

+ dataLicense: /SimpleLicensing/AnyLicenseInfo[0..1] 

+ namespaceMap: NamespaceMap [0..*] 

SpdxDocument Artifact 

+ profileConformance: ProfileIdentifierType[... 

ElementCollection 

Element 

Software Name 



 
System Package Data Exchange (SPDX), v3.0 – beta 1                                                                                                       75  

10 Security Profile 
Summary 

The Security Profile captures security related information. 

Description 

The Security Profile captures security related information. Figure 7 below shows the logical model for the Security 
profile and its enumerations. 

Metadata 
 

 

 

 
Figure 11 – Security Model profile and enumerations 

Security Name 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

  

 

 
 

 

 

 

 
 
 

 

  

 
 
 

 

 

 
 
 

 

 

 
 
 
 

 
 

 

 
 
 
 

 
 

 

 
 
 
 

 
 

 

 
 
 
 

 
 

 

 

 

 
 

 
 

 

 

  



 
100                                                                                      System Package Data Exchange (SPDX), v3.0 – beta 1   

11 Licensing Profile 
Summary 

The Licensing Profile defines a minimum set of license information to facilitate compliance with typical license use 
cases. 

Description 

The Licensing profile only contains the additional requirement that any Software Artifact must have a concludedLicense 
Relationship. 

Classes and Property restrictions are defined in the SimpleLicensingProfile (Classes and Properties associated with string 
license expressions) and in the ExpandedLicensingProfile (Classes and Properties used for a fully parsed syntax tree of 
license expressions). 

There are 2 relationship types related to licensing - declaredLicense and concludedLicense. 

A declaredLicense identifies the license information actually found in the Software Artifact, for example as detected by 
use of automated tooling. 

This field is not intended to capture license information obtained from an external source, such as a package's website. 
Such information can be included, as needed, in the concludedLicense field. 

A declaredLicense may be expressed differently in practice for different types of Software Artifacts. For example: 
 

• for Packages: 
• would include license info for the Package as a whole, found in the Package itself (e.g., LICENSE file, 

README file, metadata in the Package, etc.) 
• would not include any license information that is not in the Package itself (e.g., license information from the 

project’s website or from a third party repository or website) 
• for Files: 
• would include license info found in the File itself (e.g., license header or notice, comments indicating the 

license, SPDX-License-Identifier expression) 
• would not include license info found in a different file (e.g., LICENSE file in the top directory of a repository) 
• for Snippets: 
• would include license info found in the Snippet itself (e.g., license notice, comments, SPDX-License-Identifier 

expression) 
• would not include license info found elsewhere in the File or in a different File (e.g., comment at top of File if it 

is not within the Snippet, LICENSE file in the top directory of a repository) 

A declaredLicense relationship to NoneLicense indicates that the corresponding Package, File or Snippet contains no 
license information whatsoever. 

A declaredLicense relationship to NoAssertionLicense indicates that one of the following applies: * the SPDX data 
creator has attempted to but cannot reach a reasonable objective determination; * the SPDX data creator has made no 
attempt to determine this field; or * the SPDX data creator has intentionally provided no information (no meaning should 
be implied by doing so). 

If a declaredLicense relationship is not present, no assumptions can be made about whether or not a declaredLicense 
exists. Note that a missing declaredLicense is not the same as a relationship to NoAssertionLicense since the latter is a 
"known unknown" whereas no assumptions can be made from a missing declaredLicense relationship. 

A concludedLicense is the license identified by the SPDX data creator, based on analyzing the license information in the 
Software Artifact and other information to arrive at a reasonably objective conclusion as to what license governs the 
Software Artifact. 

A concludedLicense relationship to NoneLicense indicates that the SPDX data creator has looked and did not find any 
license information for this Software Artifact. 



 
System Package Data Exchange (SPDX), v3.0 – beta 1                                                                                                       101  

A concludedLicense relationship to NoAssertionLicense indicates that one of the following applies: * the SPDX data 
creator has attempted to but cannot reach a reasonable objective determination; * the SPDX data creator has made no 
attempt to determine this field; or * the SPDX data creator has intentionally provided no information (no meaning should 
be implied by doing so). 

If a concludedLicense is not present, no assumptions can be made about whether or not a concludedLicense exists. Note 
that a missing concludedLicense is not the same as a relationship to a NoAssertionLicense since the latter is a "known 
unknown" whereas no assumptions can be made from a missing concludedLicense relationship. 

A written explanation of a relationship to a NoAssertionLicense MAY be provided in the comment field for the 
relationship. 

If the concludedLicense for a Software Artifact is not the same as its declaredLicense, a written explanation SHOULD be 
provided in the concludedLicense relationship comment field. 

Figure 8 below shows the logical model for the Simple and Expanded Licensing profiles. 

Metadata 
 

 
 

 
Figure 12 – Licensing Simple and Expanded Model profiles 

Licensing Name 

 
 

 

 

  

  

  

 
 

 
 
 
 

 

 

 

 

 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 



 
102                                                                                      System Package Data Exchange (SPDX), v3.0 – beta 1   

11.1 SimpleLicensing Profile 
Summary 

 
Additional metadata relating to software licensing. 

 
Description 

 
The SimpleLicensing profile provides classes and properties to express licenses as a license expression string. It also 
provides the base abstract class, AnyLicenseInfo, used for references to license information. The SimpleLicensingText 
class provides a place to record any license text found that does not match a license on the SPDX license list. 

 
The ExpandingLicensing profile can be used to represent the complete parsed license expressions. 

 
Metadata 

 
https://spdx.org/rdf/v3/SimpleLicensing 

 

 
SimpleLicensing Classes 

11.1.1 AnyLicenseInfo 
Summary 

 
Abstract class representing a license combination consisting of one or more licenses (optionally including additional 
text), which may be combined according to the SPDX license expression syntax. 

 
Description 

 
An AnyLicenseInfo is used by licensing properties of software artifacts. It can be a NoneLicense, a NoAssertionLicense, 
single license (either on the SPDX License List or a custom-defined license); a single license with an "or later" operator 
applied; the foregoing with additional text applied; or a set of licenses combined by applying "AND" and "OR" operators 
recursively. 

 
Metadata 

 
https://spdx.org/rdf/v3/SimpleLicensing/AnyLicenseInfo 

 
Name AnyLicenseInfo 
Instantiability Abstract 
SubclassOf /Core/Element 

Properties 
 

Property Type minCount maxCount 

SimpleLicensing Name 



 
124                                                                                      System Package Data Exchange (SPDX), v3.0 – beta 1   

12 Dataset Profile 
Summary 

Everything having to do with datasets. 

Description 

The Dataset profile provides meta-data about data files. Figure 9 below shows the logical model for the Dataset profile 
with its classes and enumerations. 

Metadata 
 

 

Figure 13 – Dataset Model profile and enumerations 

Dataset Name 

Dataset 

+ packageVersion: String[0..1] 

+ downloadLocation: anyURI[0..1] 

+ packageUrl: anyURI[0..1] 

+ homePage: anyURI[0..1] 

+ sourceInfo: String[0..1] 

Package 



 
System Package Data Exchange (SPDX), v3.0 – beta 1                                                                                                       135  

13 AI Profile 
Summary 

 
Additional metadata based on software profile, that is useful for ai applications and models. 

 
Description 

 
The AI profile namespace defines concepts related to AI application and model artifacts. Figure 10 below shows the 
logical model for the AI profile with its classes and enumerations. 

 
Metadata 

 

 

Figure 14 – AI Model profile and enumerations 

AI Name 

AIPackage 

+ packageVersion: String[0..1] 

+ downloadLocation: anyURI[0..1] 

+ packageUrl: anyURI[0..1] 

+ homePage: anyURI[0..1] 

+ sourceInfo: String[0..1] 

Package 



 
System Package Data Exchange (SPDX), v3.0 – beta 1                                                                                                       145  

Figure 15 – Build Model profile 

14 Build Profile 
Summary 

 
The Build Profile defines the set of information required to describe an instance of a Software Build. 

 
Description 

 
A Software Build is defined here as the act of converting software inputs into software artifacts using software build 
tools. Inputs can include source code, config files, artifacts that are build environments, and build tools. Outputs can 
include intermediate artifacts to other build inputs or the final artifacts. 

 
The Build profile provides a subclass of Element called Build. It also provides a minimum set of required Relationship 
Types from the Core profile: 

 
• hasInputs: Describes the relationship from the Build element to its inputs. 
• hasOutputs: Describes the relationship from the Build element to its outputs. 
• invokedBy: Describes the relationship from the Build element to the Agent that invoked it. 

 
In addition, the following Relationship Types may be used to describe a Build. 

 
• hasHost: Describes the relationship from the Build element to the build stage or host. 
• configures: Describes the relationship from a configuration to the Build element. 
• ancestorOf: Describes a relationship from a Build element to Build eelements that describe its child builds. 
• decendentOf: Describes a relationship from a child Build element to its parent. 
• usesTool: Describes a relationship from a Build element to a build tool. 

 
All relationships in the Build Profile are scoped to the "build" LifecycleScopeType period. 

 
The hasInputs relationship can be applied to a config file or a build tool if the nature of these inputs are not known at 
the creation of an SPDX document. 

 
Metadata 

 
Name Build 

+ spdxId: anyURI[1] 

+ name: String[0..1] 

+ summary: String[0..1] 

+ description: String[0..1] 

+ comment: String[0..1] 

+ creationInfo: CreationInfo[1] 

+ verifiedUsing: IntegrityMethod[0..*] 

+ externalRef: ExternalRef[0..*] 

+ externalIdentifier: ExternalIdentifier[0..*] 

+ extension:Extension[0..1] 

Build 

Element 



 
152                                                                                      System Package Data Exchange (SPDX), v3.0 – beta 1   

15 Lite Profile 
Summary 

 
The SPDX Lite profile defines a subset of the SPDX specification, from the point of view of use cases in some 
industries. SPDX Lite aims at the balance between the SPDX standard and actual workflows in some industries. 

 
Description 

 
The SPDX Lite profile consists of mandatory fields from the Document Creation and Package Information sections and 
other basic information. 

 
The mandatory part of the Package information in SPDX Lite is basic but useful for complying with licenses. It is easy to 
understand licensing information by reading an SPDX Lite file. It is easy to create manually an SPDX Lite file by anyone 
who does not have enough knowledge about licensing information, so that tools are not necessarily required to create an 
SPDX Lite file. 

 
SPDX Lite has affinity with SPDX tools due to its containing the mandatory part of the Document Creation and Package 
Information in the SPDX Lite definition. 

 
An SPDX Lite document can be used in parallel with SPDX documents in software supply chains. 

 
Metadata 

 

Lite Name 



 
System Package Data Exchange (SPDX), v3.0 – beta 1                                                                                                       153  

16 Extension Profile 
Summary 

 
Everything having to do with SPDX extensions. 

 
Description 

 
The Extension namespace defines the abstract Extension class serving as the base for all defined extension subclasses. 
Figure 12 below shows the logical model for the Extension profile. 

 
Metadata 

 

 
 

 

 
Figure 16 – Extension Model profile 

Extension Name 

Extension 


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

