

Current the Decision Requirements Diagram does not show when

data provided by a Input Data or decision is iterated through or aggre-

gated by the dependent decision. It does not depict changes in data

cardinality or fan.

The least impactful way to document fan in a decision require-

ments diagram is to indicate visually, using a set of three vertical lines1,

which end or ends of an information requirement are multi-instance:

 Where fan-in occurs, indicate that there are multiple in-

stances of the decision producing data which is fed into a

single instance of the decision that consumes (and aggre-

gates) it

 Where fan-out occurs because a data input or sub-decision

creates a collection, indicate visually that the consuming

decision will be invoked multiple times: once per item in

the collection.

Cart Price
Discounted Item

Price
Item

Figure 1 Decision Requirement Diagram Depicting Multi-Instance Deci-

sions

Figure 1 includes this idea. Multiple Items are each processed by

their own instance of the Discounted Item Price decision (fan neutral). This

produces a collection of item prices which fans-in to a single instance of

the Cart Price decision. The latter decision table definition holds the de-

tail of how the fan-in works (i.e., how the prices are aggregated into a

total discount per cart). Similarly, Figure 2 explicitly depicts that for a

single customer there will be a collection of Eligible Products and each of

these will need its own instance of Cost Product. In other words the latter

decision must iterate over a collection of products.

1 This symbol is used to be consistent with BPMN which uses it to denote a

multi-instance process. We use it to denote the cardinality of a requirements rela-

tionship.

2 Additional Concepts

Eligible Products Cost ProductCustomer

Figure 2 Decision Requirements Diagram Depicting Explicit Fan-Out

Where necessary, a decision table’s decision cardinality involves

nominating a data class. When a decision table nominates a cardinality it

is separately invoked for each available instance of the specified data

class. In the case of Figure 2, the decision cardinality is Product—

therefore the table is invoked once per Product.

An explicit statement of a cardinality is not required if it can be un-

ambiguously inferred from input data. If, as is the case in the majority of

situations, a decision has only a single data input or multiple data inputs

bound by a 1:1 relationship with no collections the cardinality does not

have to be explicitly stated.

If there is any chance of ambiguity, the cardinality should be doc-

umented in the context of the decision table consuming the data.

Notes
1. Notice that multi-instance symbols are not placed inside the

decision as this can cause confusion if a single decision

that produces a collection provides an information re-

quirement to two consumer decisions—one of which ex-

hibits fan-in (consumer aggregates) and the other fan-out

(the consumer iterates). A similar argument exists for deci-

sions with information requirements on data inputs—

some may be consumed individually, others iterated and

others aggregated. Cardinality is a property of the infor-

mation relationship between one component and anoth-

er—rather than a set property of any component. Rather

like cardinality of a class relationship in UML is seen as a

property of the relationship not either class.

2. Although fan-in suggests aggregation, it is best to leave the

mechanism of that aggregation to the Decision Logic Lev-

el.

3. The convention (shown in Figure 2) that any decision that

produces a collection uses a plural name also clarifies mat-

ters.

