H Annex H: Precise Semantics of SysML

(informative)

H.1 Overview

This annex defines the precise semantics of the abstract syntax of a subset of SysML stereotypes. This semantic
definition is given as an extension to the semantic model for PSCS (see [PSCS], Clause 8), which is itself an
extension of the execution model for fUML (see [fUML], Clause 8). This annex includes only the extensions to the
PSCS model necessary for SysML. However, the full semantics for SysML are given by the f{UML execution model
as extended for PSCS, which is then a complete, executable f{UML model of the operational semantics for the
combined PSCS and SysML subset.

The SysML execution model is given as an extension of the PSCS model in order to ensure that SysML semantics
are compatible with PSCS semantics.

The SysML semantics specified by this annex does not depend on PSSM. However it is possible for an execution
engine to conform to both PSSM and this specification.

The circularity of defining SysML semantics by extending the f{UML execution model, which is itself an fUML
model, is handled as it is in fUML. That is, the execution model is defined using only the further subset of f{UML
whose semantics are separately specified by the fUML base semantics (see [fUML], Clause 10), which is not
extended further for the purposes of SysML. This further subset, known as Base UML (or “bUML”) includes a
subset of UML activity modeling that is used to specify the detailed behavior of all concrete operations in the
execution model. However, rather than using activity diagram notation to represent such activity models, they are
specified in the execution model extensions for SysML using the Java-syntax textual notation whose mapping to
UML is given in Annex A of [fUML].

The SysML extensions to the PSCS execution model are organized into five packages. Figure H.1 shows each of
these packages and their dependencies on packages from the SysML profile and from fUML and PSCS semantic
models. These dependencies are represented as package-import relationships, which also make the unqualified
names of the necessary syntactic and semantics elements visible for use in the detailed behavioral code of each of
the SysML semantics packages.

The subsequent clauses in this annex describe each of the SysML semantics packages in turn. The description
includes a class model for the contents of the package and an explanation of the operational semantics defined by the
functionality of the classes in the model. Those packages are organizes as follows:

+ the "Actions" package specifies additional constraints on the UML::Actions package that restrict the scope
of models on which this operational semantics applies. It defines also a set of semantics visitors that
extends some from the fUML::Semantics::Actions package according to semantics defined by SysML
stereotypes.

« The "Activities" package defines a set of semantics visitors that extends some from the
fUML::Semantics::Activities package according to semantics defined by SysML stereotypes.

+ The "Blocks" package extends the CS_Object visitor define by the PSCS specification and defines a set of
construct that can support the semantics defined by SysML stereotypes from the SysML::Blocks package.

+ The "PortsAndFlows" package specifies additional constraints on ports, Flow properties and directed
features that restrict the scope of models on which this operational semantics applies.

+ The "Loci" package is added for specifying necessary extensions of the Loci package of PSCS together
with a set of utility operations that simplify the specification of teh semantics visitors

OMG Systems Modeling Language, v1.7 363

package [Package] SysML_Semantics| SysMLisemantics]J
PSCS_Semantics
Semantics
Actions _ _ wmport» | | | Actions fUML_Semantics A
(SysML_Semantics)]
«profile» :
SysML Semantics
Activities) Activities «importy Activities
| _mport> | (SysML_Semantics) [T T — — — 7 r-—————=== =7 = 1>
Blocks «import» Blocks) =
<l— == - (SysML_Semantics) |— — «import» | StructuredClassifiers
)
|
«import» |
Ports&Flows) PortsAndFlows | _ _ _ _ || _ _ _ _ |
| _«import> | (SysML_Semantics)
i
Loci «import» S o
***** oci
(SysML_Semantics)

Figure H.1. SysML_Semantics
H.2 References

The following normative documents contain provisions which, through reference in this text, constitute provisions
of this specification. For versioned references, subsequent amendments to, or revisions of, any of these publications
do not apply.

[fUML] Semantics of a Foundational Subset for Executable UML Models (fUML), version 1.5,
http://www.omg.org/spec/FUML

[PSCS] Precise Semantics of UML Composite Structures (PSCS), version 1.2, http://www.omg.org/spec/PSCS

[PSSM] Precise Semantics of UML State Machines, version 1.0, https://www.omg.org/spec/PSSM/1.0/PDF

[UML] Unified Modeling Language, version 2.5.1, https://www.omg.org/spec/UML/2.5.1/PDF

H.3 Semantics

This clause is organized in sub-clauses that include this overview and a set of sub-clauses chapter that specifies the
structural and behavioral constructs of this specification and/or a sub-clause that defines additional constraints that
restrict the scope on which the semantics defined by this specification applies.

Those semantics are defined as an extension of the PSCS semantics that are themselves defined as an extension of

fUML. A SysML model that syntactically conforms to this subset shall have an abstract syntax representation that
consists solely of instances of metaclasses that are (imported) members of the either the f{UML_Syntax::Syntax or

364 OMG Systems Modeling Language, v1.7

http://www.omg.org/spec/FUML
http://www.omg.org/spec/PSCS
https://www.omg.org/spec/PSSM/1.0/PDF
https://www.omg.org/spec/UML/2.5.1/PDF

the PCSC_Syntax packages, as described in the corresponding specifications. Also only the SysML Stereotypes
listed in the sub-clauses below shall be used.

H.3.1 Actions
H.3.1.1 Overview

The Actions package introduces extensions to various f{UML action activation classes defined in PSCS or in f{UML.
SysML does not specify any stereotype for actions. However the semantics of number of SysML stereotypes
actually impact the semantics of some actions that are performed on elements those stereotypes are applied on. For
instance, binding connectors can link together a pair of properties so that their values shall be the same at any time.
The operational consequence of this semantics is that any action modifying the value of one of those properties shall
be replicated to the value of the property it is bound to.

H.3.1.2 Additional Constraints

upperbound equal upper
The value of a Pin for its upperbound and upper properties shall be the same

context Pin inv: self.upperBound = self.upper

H.3.1.3 Class descriptions

class [Package] Actions [@ Aciions])

cs_A s SysML_AddStructuralF Acti
operations

+doAction(){redefines doAction)
d : 1],

[i :
+doFlowAction(targetObject : Value, featureValue : FeatureValue [1])
+doDirectedFeatureAction(targetObject : Value, featureValue : FeatureValue [1])

0..1)

- SysML_C ActionActi
operations

+doAction(){redefines doAction)

H; 1], visitedFeatures : F 0.71)
+doFlowAction(targetObject : Value, featureValue : FeatureValue [1])
+doDirectedFeatureAction(targetObject : Value, featureValue : FeatureValue [1])

ReadStructuralf ActionActivati SysML_| ActionActi
‘ L’i operations

+doAction(){redefines doAction)

‘ cs_| tu Acti ivati ﬁ SysML_|

+doFlowAction(targetObject : Value, featureValue : FeatureValue [1])
+doAction(}redefines doAction)
+doDirectedFeatureAction| targetObject : Value, featureValue : FeatureValue [1])

operations

0.1

SysML_ i ionActi

operations
+doAction(){redefines doAction)

o
[
)

v a

SysML_InputPinActivation

InputPinActivation operations
+sendOffers(tokens : Token [*]){redefines sendOffers}

SysML_OutputPinActivation

OutputPinActivation F operations
+sendOffers(tokens : Token [']){redefines sendOffers}

+addToken(token : Token){redefines addToken)

Figure H.2. Actions
H.3.1.3.1 SysML_AddStructuralFeatureValueActionActivation

Description

This semantics visitor extends the PSCS CS_AddStructuralFeatureValueActionActivation class in order to support
semantics of binding connectors, flow properties and directed features.

OMG Systems Modeling Language, v1.7 365

Generalizations

* CS_AddStructuralFeatureValueActionActivation (from Actions)
Operations

* doAction () {redefines doAction}

// If the feature has a binding connector attached
// a coordinated update is done
// otherwise, behaves as usual

// get the value of the target pin before the super.doAction() is
called

AddStructuralFeatureValueAction action =
(AddStructuralFeatureValueAction) (this.node);

Value target = this.getToken (action.object) .getValue (0);

super.doAction () ;

StructuralFeature feature = action.structuralFeature;

if (feature instanceof Property & object instanceof StructuredvValue) {
FeatureValue featureValue = action.object.getFeatureValue (feature);
FeatureValuelList visitedFeatures = new FeatureValuelist();

this.doBoundAction (featureValue, visitedFeatures);

//Flow property management
this.doFlowAction (target, featureValue);

//Directed feature management
this.doDirectedFeatureAction (target, featureValue);

* doBoundAction (in featureValue : FeatureValue, in visitedFeatures : FeatureValue)

// check that this feature value has not been visited yet
// otherwise stop the recursion here
for (int k=0; k < visitedFeature.size(); k++) {
if (featureValue == visitedFeature.get (k)) {
return;

// add the feature value to the visited list
visitedFeatures.addValue (featureValue) ;

// retrieve all the bindings for this feature value
SysML Locus locus = (SysML Locus) this.getExecutionLocus ()

366 OMG Systems Modeling Language, v1.7

ValueBindingList bindings = locus.getAllValueBindings (featureValue) ;

for (int 1 = 0; 1 < bindings.size(); 1i++) {
// get the feature value bound by this binding
FeatureValue otherFeatureValue =

bindings.get (i) .getOppositeBoundFeatureValue (featurevValue) ;

// Loop on values...
for (int j = 0; j < featureValue.values.size(); j++) {

otherFeatureValue.values = featureValue.values;

// execute recursively
doBoundAction (otherFeatureValue, visitedFeatures):;

* doDirectedFeatureAction (in targetObject : Value, in featureValue : FeatureValue)

// If the feature is a required feature the value has to be added to
the matched feature, if any

Feature feature = featureValue.feature;

SysML Locus locus = (SysML Locus) this.getExecutionLocus();

if (feature instanceof Property && locus.isRequiredFeature ((Property)
feature) && targetObject instanceof StructuredValue) ({

// retrieve the matching feature value
FeatureValue matchingFeatureValue =
locus.getMatchingFeatureValue (targetObject, feature);

if (matchingFeatureValue != null) {
// Loop on values...
for (int j = 0; j < featureValue.values.size(); J++) {
matchingFeatureValue.values = featureValue.values;

// trigger binding connections, if any
FeatureValuelist visitedFeatures = new FeatureValuelList () :;
doBoundAction (matchingFeatureValue, visitedFeatures);

» doFlowAction (in targetObject : Value, in featureValue : FeatureValue)

// Looks for the value of the owner of the property,
// i.e. typicaly the value passed to the action

// using its "target" input pin.

// The link to be used connects this "target"

OMG Systems Modeling Language, v1.7 367

// rather than the feature value itself.

// It is check whether it is a flow property

Feature feature = featureValue.feature;

SysML Locus locus = (SysML Locus) this.getExecutionLocus();

if (feature instanceof Property &é&
locus.isFlowProperty ((Property) feature) &&
targetObject instanceof Structuredvalue) {

// retrieve the matching feature value
FeatureValue matchingFeatureValue =
locus.getMatchingFeatureValue (targetObject, feature);

if (matchingFeaturevValue != null) {
// Loop on values...
for (int j = 0; j < featureValue.values.size(); Jj++) {
matchingFeatureValue.values.get (j) = featureValue.values.get (J):;

// trigger binding connections, if any
FeatureValuelList visitedFeatures = new FeatureValuelList () ;
doBoundAction (matchingFeatureValue, visitedFeatures);

H.3.1.3.2 SysML_CallOperationActivation

Description

This semantics visitor extends the PSCS CS_CallOperationActionActivation class in order to support semantics of
binding connectors, flow properties and directed features.

Generalizations

+ CallOperationActionActivation (from Actions)

Operations

368

+ getCallExecution () : Execution [1] {redefines getCallExecution}

// Check whether the operation is a required feature.
// If so, call from the matching feature instead, if any.
// If it is not a required feature, invoke the regular getCallExecution

CallOperationAction action = (CallOperationAction) (this.node);
Value target = this.takeTokens (action.target) .getValue(0);

Execution execution = null;

if (action.operation != null) {

OMG Systems Modeling Language, v1.7

// If the operation i1s a required feature the matching feature shall

be called
SysML Locus locus = (SysML Locus) this.getExecutionLocus();
if (locus.isRequiredFeature ((Property) feature)) ({

// retrieve the matching feature value
FeatureValue matchingOperation =
locus.getMatchingFeatureValue (target, action.operation);

target = locus.getObjectWithFeatureValue (matchingOperation) ;

execution = ((Reference) target).dispatch(matchingOperation);
}
}
else {
execution = super.getCallExecution();

return execution;

H.3.1.3.3 SysML_ClearStructuralFeatureActionActivation

Description

This semantics visitor extends the PSCS CS_ClearStructuralFeatureActionActivation class in order to support

semantics of binding connectors, flow properties and directed features.
Generalizations

* CS_ClearStructuralFeatureActionActivation (from Actions)
Operations

* doAction () {redefines doAction}

// If the feature has a binding connector attached
// a coordinated update is done
// otherwise, behaves as usual

// get the value of the target pin before the super.doAction() is

called
ClearStructuralFeatureValueAction action =
(ClearStructuralFeatureValueAction) (this.node);

Value target = this.getToken (action.object) .getValue (0);

super.doAction () ;

OMG Systems Modeling Language, v1.7

369

StructuralFeature feature = action.structuralFeature;
if (feature instanceof Property && object instanceof StructuredvValue) {
FeatureValue featureValue = action.object.getFeatureValue (feature);

FeatureValuelist visitedFeatures = new FeatureValuelList ();
this.doBoundAction (featureValue, visitedFeatures);

//Flow property management
this.doFlowAction (target, featureValue);

//Directed feature management
this.doDirectedFeatureAction (target, featureValue);

* doBoundAction (in featureValue : FeatureValue, in visitedFeatures : FeatureValue)

// Check that this feature value has not been visited yet
// otherwise stop the recursion here
for (int k=0; k < visitedFeature.size(); k++) {
if (featureValue == visitedFeature.get (k)) {
return;

// add the feature value to the visited list
visitedFeatures.addValue (featureValue) ;

// retrieve all the bindings for this feature value
SysML Locus locus = (SysML Locus) this.getExecutionLocus();
ValueBindingList bindings = locus.getAllValueBindings (featureValue);

for (int 1 = 0; 1 < bindings.size(); 1i++) {
// get the feature value bound by this binding
FeatureValue otherFeatureValue =

bindings.get (1) .getOppositeBoundFeatureValue (featurevValue) ;

otherFeatureValue.values = new ValuelList();
// execute recursively
doBoundAction (otherFeatureValue, visitedFeatures):;
+ doDirectedFeatureAction (in targetObject : Value, in featureValue : FeatureValue)
// 1f the feature is a required feature the values of the matched
feature, if any,

// have to be cleared
Feature feature = featureValue.feature;

370 OMG Systems Modeling Language, v1.7

SysML Locus locus = (SysML Locus) this.getExecutionLocus();

if (feature instanceof Property && locus.isRequiredFeature ((Property)
feature) && targetObject instanceof StructuredvValue) ({

// retrieve the matching feature value
FeatureValue matchingFeatureValue =
locus.getMatchingFeatureValue (targetObject, feature);

if (matchingFeaturevValue != null) {
matchingFeatureValue.values = new ValuelList();

// trigger binding connections, if any
FeatureValuelList visitedFeatures = new FeatureValuelist();
doBoundAction (matchingFeatureValue, visitedFeatures);

+ doFlowAction (in targetObject : Value, in featureValue : FeatureValue)

// Get the value of the owner of the property,

// i.e. typicaly the value passed to the action using its "target"
input pin.

// The link to be used connects this "target" rather than the feature
value itself.

// check whether this is a flow property

Feature feature = featureValue.feature;

SysML Locus locus = (SysML Locus) this.getExecutionLocus();

if (feature instanceof Property &&
locus.isFlowProperty ((Property) feature) &&
targetObject instanceof Structuredvalue) {

// retrieve the matching feature value
FeatureValue matchingFeatureValue =

locus.getMatchingFeatureValue (targetObject, feature);

if (matchingFeatureValue != null) {
matchingFeatureValue.values = new ValueList();

// trigger binding connections, if any
FeatureValuelList visitedFeatures = new FeatureValuelList();
doBoundAction (matchingFeatureValue, visitedFeatures);

H.3.1.3.4 SysML_InputPinActivation

OMG Systems Modeling Language, v1.7 371

Description

This semantics visitor extends the f{UML InputPinActivation class in order to support semantics of the NoBuffer
stereotype.

Generalizations
 InputPinActivation (from Actions)
Operations

+ sendOffers (in tokens : Token) {redefines sendOffers}

// call the original sendOffer operation
// then, if the NoBuffer stereotype is applied,
// discard remaining tokens, if any

super.sendOffers (tokens);
ObjectNode node = (ObjectNode) this.node;

if (node.owner instanceof StructuredActivityNode) {
SysML Locus locus = (SysML Locus) this.getExecutionLocus();

if (locus.isNoBuffer (node)) {
this.clearToken () ;

H.3.1.3.5 SysML_OutputPinActivation
Description

This semantics visitor extends the f{UML OutputPinActivation class in order to support semantics of both the
NoBuffer and the Overwrite stereotypes.

Generalizations
* OutputPinActivation (from Actions)
Operations

+ addToken (in token : Token) {redefines addToken}

// if the Overwrite stereotype is applied and the node holds at least
one token,

// remove the "oldest" token in the list,

// depending on the node ordering

// then call the original addToken operation

ObjectNode node = (ObjectNode) this.node;

372 OMG Systems Modeling Language, v1.7

SysML Locus locus = (SysML Locus) this.getExecutionLocus();

if (locus.isOverwrite (node) && his.heldTokens.size() > 0) {
//this.clearToken () ;
if (node.ordering == ObjectNodeOrderingKind::FIFO) {

this.heldTokens.remove (0) ;

}

else {
if (node.ordering == ObjectNodeOrderingKind::LIFO) {
this.heldTokens.remove (this.heldTokens.size ()-1);

super.addToken (tokens) ;
» sendOffers (in tokens : Token) {redefines sendOffers}

// call the original sendOffer operation
// then, if the NoBuffer stereotype is applied,
// discard remaining tokens, if any

super.sendOffers (tokens);

ObjectNode node = (ObjectNode) this.node;
SysML Locus locus = (SysML Locus) this.getExecutionLocus();
if (locus.isNoBuffer (node)) {

this.clearToken () ;

H.3.1.3.6 SysML_ReadStructuralFeatureActionActivation

Description

This semantics visitor extends the f{UML ReadStructuralFeatureActionActivation class in order to support semantics
of required directed features.

Generalizations

» ReadStructuralFeatureActionActivation (from Actions)
Operations

* doAction () {redefines doAction}

// Check whether the feature is a required feature
// 1f so, get the value from a matching feature, if any.
// If it is not a required feature, invoke the regular doACtion

OMG Systems Modeling Language, v1.7 373

ReadStructuralFeatureAction action = (ReadStructuralFeatureAction)

(this.node) ;
StructuralFeature feature = action.structuralFeature;

if (feature != null && action.object instanceof Structuredvalue) {

// 1If the feature is a required feature,
// the values of the matched feature, if any, have to be cleared
SysML Locus locus = (SysML Locus) this.getExecutionLocus();

if (locus.isRequiredFeature ((Property) feature)) ({

// retrieve the matching feature value
FeatureValue matchingFeatureValue =
locus.getMatchingFeatureValue (targetObject, feature);

if (matchingFeatureValue != null) {
matchingFeatureValue.values = new ValueList();
this.putTokens (action.result, matchingFeatureValue.values);

}
else {
super.doAction () ;

H.3.1.3.7 SysML_RemoveStructuralFeatureValueActionActivation

Description

This semantics visitor extends the PSCS CS_RemoveStructuralFeatureValueActionActivation class in order to
support semantics of binding connectors, flow properties and directed features.

Generalizations

* CS_RemoveStructuralFeatureValueActionActivation (from Actions)
Operations

* doAction () {redefines doAction}

// If the feature has a binding connector attached
// a coordinated update is done
// otherwise, behaves as usual

// get the value of the target pin before the super.doAction() is

called
RemoveStructuralFeatureValueAction action =
(RemoveStructuralFeatureValueAction) (this.node);

374 OMG Systems Modeling Language, v1.7

Value target = this.getToken (action.object) .getValue(0);
super.doAction () ;

StructuralFeature feature = action.structuralFeature;
if (feature instanceof Property && object instanceof Structuredvalue) {
FeatureValue featureValue = action.object.getFeatureValue (feature);

FeatureValuelist visitedFeatures = new FeatureValuelList ();
this.doBoundAction (featureValue, visitedFeatures);

//Flow property management
this.doFlowAction (target, featureValue);

//Directed feature management
this.doDirectedFeatureAction (target, featureValue);

» doBoundAction (in featureValue : FeatureValue, in visitedFeatures : FeatureValue)

// check that this feature value has not been visited yet
// otherwise stop the recursion here
for (int k=0; k < visitedFeature.size(); k++) {
if (featureValue == visitedFeature.get (k)) {
return;

// add the feature value to the visited list
visitedFeatures.addValue (featureValue) ;

// retrieve all the bindings for this feature value
SysML Locus locus = (SysML Locus) this.getExecutionLocus();
ValueBindingList bindings = locus.getAllValueBindings (featureValue) ;

for (int 1 = 0; 1 < bindings.size(); 1i++) {
// get the feature value bound by this binding
FeatureValue otherFeatureValue =

bindings.get (i) .getOppositeBoundFeatureValue (featurevValue) ;

// Loop on values...

otherFeatureValue.values = new ValuelList ()
for (int j = 0; j < featureValue.values.size(); j++) {
otherFeatureValue.values.get (j) = featureValue.values.get (j);

OMG Systems Modeling Language, v1.7 375

// execute recursively
doBoundAction (otherFeatureValue, visitedFeatures);

* doDirectedFeatureAction (in targetObject : Value, in featureValue : FeatureValue)

// 1If the feature is a required feature the values of the matched
feature, if any,

// have to be cleared

Feature feature = featureValue.feature;

SysML Locus locus = (SysML Locus) this.getExecutionLocus();

if (feature instanceof Property &é&
locus.isRequiredFeature ((Property) feature) &&
targetObject instanceof StructuredvValue) {

// retrieve the matching feature value
FeatureValue matchingFeatureValue =
locus.getMatchingFeatureValue (targetObject, feature);

if (matchingFeatureValue != null) {
matchingFeatureValue.values = matchingFeatureValue.values;

// trigger binding connections, if any
FeatureValuelist visitedFeatures = new FeatureValuelList ();
doBoundAction (matchingFeatureValue, visitedFeatures);

» doFlowAction (in targetObject : Value, in featureValue : FeatureValue)

// Get the value of the owner of the property, i.e. typicaly the value
passed to teh action using its "target" input pin

// the link to be used will connect this "target" rather than the
feature value itself.

//check whether this is a flow property

Feature feature = featureValue.feature;

SysML Locus locus = (SysML Locus) this.getExecutionLocus();

if (feature instanceof Property && locus.isFlowProperty ((Property)
feature) && targetObject instanceof StructuredvValue) ({

// retrieve the matching feature value
FeatureValue matchingFeatureValue =

locus.getMatchingFeatureValue (targetObject, feature);

if (matchingFeaturevValue != null) {
matchingFeatureValue.values = featureValue.values;

376 OMG Systems Modeling Language, v1.7

// trigger binding connections, if any
FeatureValuelist visitedFeatures = new FeatureValuelList () :;
doBoundAction (matchingFeatureValue, visitedFeatures);

H.3.1.3.8 SysML_SendSignalActionActivation
Description
This semantics visitor extends the PSCS CS_RemoveStructuralFeatureValueActionActivation class in order to
support semantics of proxy ports. Note: the final target of the Signal shall be have Reception for this Signal in order
to trigger a behavior when the signal occurrence is received.
Generalizations

+ CS SendSignalActionActivation (from Actions)

Operations

* doAction () {redefines doAction}

// If onPort is not specified, behaves like in fUML/PSCS
// If onPort is specified:

// - if it is a behavior port,
// get the value from the onPort pin.
// - else (i.e. if it is not a behavior port),

// get the value from the target pin.

// If the value is not a reference then do nothing.

// Otherwise, looks for all links connected to the referenced object

// 1if links are found, construct a signal using the values from the
argument pins

// and send it to the referenced object on the opposite side of each of
those links

SendSignalAction action = (SendSignalAction) (this.node);
Port port = action.getOnPort();

if (port == null) {
// Behaves like in fUML
super.doAction () ;

} else {

FeatureValuelist actualTargets;
// Get all links (available at the locus of this object) that are

attached to this port
// (i.e. the port is an end such links)

OMG Systems Modeling Language, v1.7 377

// and get their opposite ends as actual targets
// Note: SysML links are binary

ExtensionalValuelist extensionalValues = this.locus.extensionalValues ;
Integer 1 =1 ;
while (i <= extensionalValues.size()) {
ExtensionalValue value = extensionalValues.getValue (i-1) ;
if (value instanceof CS Link) {
CS_Link link = (CS_Link)value;
if (link.getFeatureValues.size() > 1) {
if (link.getFeatureValues.get (0).feature == port) ({

actualTargets.addValue (link.getFeatureValues.get (1)) ;
}

else {
if (link.getFeatureValues.get (l).feature == port) ({
actualTargets.addValue (link.getFeatureValues.get (0)) ;

// Send the a signal instance to all the targets identified that are
CS_References
for (int j=0; j < actualTargets.size(); j++) {

Value target = actualTargets.get(j) .value;

if (target instanceof CS Reference) {
// Constructs the signal instance

Signal signal = action.getSignal();
SignalInstance signallnstance = new SignalInstance();
signalInstance.type = signal;

List attributes = signal.getOwnedAttributes()

List argumentPins = action.getArguments();

Integer j = 0;

while (j < attributes.size()) {
Property attribute = attributes.get (j);
InputPin argumentPin = argumentPins.get (j);
List values = this.takeTokens (argumentPin) ;
signallnstance.setFeaturevValue (attribute, values, 0);
j=3+5

CS Reference targetReference = (CS Reference) target;
targetReference.send(signalInstance) ;

378 OMG Systems Modeling Language, v1.7

H.3.2 Activities
H.3.2.1 Overview

This sub-clause addresses the semantics of both the NoBuffer and the Overwrite stereotypes from the Activities
package of SysML. The fact that fUML does not includes foundational semantics for time prevent from describing
those for the stereotypes Rate, Discrete and Continuous. Also the way the f{UML execution model is built would not
make it possible to describe the semantics of ControlOperator without an in-deep revision. The semantics of the
Optional stereotype is redundant with that of the multiplicity lower bound and so, already handled in f{UML. The
semantics of Probability have no direct impact on the model execution even if it can be exploited by analysis tools.

The semantics of NoBuffer, is described in the extensions of both InputPinActivation and OutputPinActivation.
Their sendOffers operations is redefined so that remaining tokens are removed if the NoBuffer stereotype is applied.
The same extension is done for ActivityParameterNodeActivation but will be effective only for Input parameter
nodes.

With the Overwrite stereotype applied on an ObjectNode, a conforming execution engine shall replace tokens stored
in a "full" object node by incoming tokens. "Full" means that the number of tokens held within the node is equal to
the value of its upperBound property. The tokens to be removed depend whether it has a FIFO or a LIFO ordering.
This is supported by the redefinition of the addToken() operation in the SysML_OutputPinActivation. It shall also
be done for InputPin, CentralBuffer, and activity parameter nodes (Datastore already has an overwrite semantics).

SysML Stereotypes Supported: NoBuffer, Overwrite

H.3.2.2 Class descriptions

class [Package] Activities [Activities] J

SysML_ActivityExecution

ActivityExecution operations
+setParameterValue(parameterValue : ParameterValue [1]){redefines setParameterValue}

SysML_ActivityParameterNodeActivation

’ ActivityParameterNodeActivation E— operations
+sendOffers(tokens : Token [*]){redefines sendOffers}

SysML_ObjectNodeActivation

’ ObjectNodeActivation E— operations
+addToken(token : Token [1]){redefines addToken}

+removeToken(token : Token [1]) : Integer [1]{redefines removeToken}
+clearTokens(){redefines clearTokens}

| ExpansionNodeActvation [+ SysML_ExpansionNodeActivation
operations

+sendOffers(tokens : Token [*]){redefines sendOffers}

Figure H.3. Activities
H.3.2.2.1 SysML_ActivityExecution

Description
This semantics visitor extends the f{UML ActivityExecution class in order to support semantics of adjunct properties.
Generalizations

» ActivityExecution (from Activities)

OMG Systems Modeling Language, v1.7 379

Operations
+ setParameterValue (in parameterValue : ParameterValue) {redefines setParameterValue}

// Call the regular SetParalmeterValue first
super.setParameterValue (parameterValue) ;

// then find looks for any adjunct bindings
SysML Locus locus = (SysML Locus) this.getExecutionLocus();
AdjunctBindingList bindings = locus.getAllAdjunctBindings (link);

for (int 1 = 0; 1 < bindings.size(); 1i++) {
// get the feature value bound by this binding

FeatureValue adjunctFeatureValue =
bindings.get (i) .adjunctFeatureValue;

// then copy its value to those of the adjunct feature
adjunctFeatureValue.values = parameterValue.values;

H.3.2.2.2 SysML_ActivityParameterNodeActivation
Description

This semantics visitor extends the f{UML ActivityParameterNodeActivation class in order to support semantics of
adjunct properties.

Generalizations
+ ActivityParameterNodeActivation (from Activities)
Operations

+ sendOffers (in tokens : Token) {redefines sendOffers}

// Call the original sendOffer operation.
// Then, 1f the NoBuffer stereotype is applied,
// discard remaining tokens, 1if any

super.sendOffers (tokens);

ObjectNode node = (ObjectNode) this.node;
SysML Locus locus = (SysML Locus) this.getExecutionLocus();
if (locus.isNoBuffer (node)) {

this.clearToken () ;

380 OMG Systems Modeling Language, v1.7

H.3.2.2.3 SysML_ExpansionNodeActivation
Description

This semantics visitor extends the f{UML ExpansionNodeActivation class in order to support semantics of the
NoBuffer stereotype.

Generalizations

+ ExpansionNodeActivation (from Actions)
Operations

+ sendOffers (in tokens : Token) {redefines sendOffers}

// Call the original sendOffer operation.
// Then, 1if the NoBuffer stereotype is applied,
// discard remaining tokens, if any

super.sendOffers (tokens) ;

ObjectNode node = (ObjectNode) this.node;
SysML Locus locus = (SysML Locus) this.getExecutionLocus();
if (locus.isNoBuffer (node)) {

this.clearToken () ;

H.3.2.2.4 SysML_ObjectNodeActivation
Description

This semantics visitor extends the f{UML ObjectNodeActivation class in order to support semantics of adjunct
properties.

Generalizations

* ObjectNodeActivation (from Activities)
Operations

+ addToken (in token : Token) {redefines addToken}

// Execute a addToken as defined in the base class
// then add the corresponding value to the adjunct property

super.addToken (token) ;

// retrieve all the adjuncts for this node
SysML Locus locus = (SysML Locus) this.getExecutionLocus();

OMG Systems Modeling Language, v1.7 381

AdjunctBindinglList bindings = locus.getAllAdjunctBindings (this);

for (int 1 = 0; 1 < bindings.size(); 1i++) {
// get the feature value bound by this adjunct binding
FeatureValue adjunctFeatureValue =
bindings.get (i) .adjunctFeatureValue;

// add the token value
adjunctFeatureValue.values.addValue (token.getValue()) ;

+ clearTokens () {redefines clearTokens}

// call the clearTokens operation of the base class and remove all
// the values from the adjunct property

super.clearTokens () ;

// retrieve all the adjuncts for this node
SysML Locus locus = (SysML Locus) this.getExecutionLocus();
AdjunctBindingList bindings = locus.getAllAdjunctBindings (this);

for (int 1 = 0; 1 < bindings.size(); i++) {
// get the feature value bound by this adjunct binding
FeatureValue adjunctFeatureValue
bindings.get (i) .adjunctFeatureValue;

// clear all the token values
adjunctFeatureValue.values.clear () ;

+ removeToken (in token : Token) : Integer [1] {redefines removeToken}

// Call the base class version of removeToken then

// 1f it return a index > 1 then remove the value at that position in
the adjunct property

// Note that index in "1 based" so adjust for java arrays that are "0
based"

int i = super.removeToken (token);

if (1 > 0) {
// retrieve all the adjuncts for this fnode
SysML Locus locus = (SysML Locus) this.getExecutionLocus();
AdjunctBindingList bindings = locus.getAllAdjunctBindings (this);

for (int j = 0; j < bindings.size(); J++) {
// get the feature value bound by this adjunct binding
FeatureValue adjunctFeatureValue =
bindings.get (j) .adjunctFeaturevValue;

382 OMG Systems Modeling Language, v1.7

// remove the token value at i-1
adjunctFeatureValue.values.removeValue (i-1);
}

}

return i;

H.3.3 Blocks
H.3.3.1 Overview

The Blocks sub-clause is focused on the semantics for AdjunctProperty and BindingConnector that link together
values of the elements they involve. The Block PropertySpecificType, DistributedProperty and ValueType
stereotypes do not add any specific executable semantics to Class, Property and DataType, respectively.
BoundReference, NestedConnectorEnd, EndPathMultiplicity, DirectedRelationshipPropertyPath and
ElementPropertyPath provide mechanisms that allow extending the UML syntax but they have no semantics
implication by themselves.

The semantics for ConnectorProperty is redundant to that of an AdjunctProperty having a Connector as its principal.
Also, the semantics of ParticipantProperty is linked to AssociationBlock, but AssociationClass is not included in
fUML. AdjunctProperty for Connector would also require AssociationClass. They will not be addressed further in
this annex.

The semantics specified for BindingConnector is based on those given to FeatureValue by fUML. A FeatureValue
owns its value (composite aggregation) and so it cannot share it with another FeatureValue. So, the only way to
realize the binding connector semantics is to have one distinct value for each and to maintain them as exact copies.
Feature that are typed by Classes have references to objects as values. Changing their value means changing that
reference, so the copy mechanism used for ValueProperties will work as well. Based on that approach, the
BindingConnector semantics is fully handled by actions modifying the value of the bound properties. That is:
AddStructuralFeatureValue, ClearStructuralFeatureValue and RemoveStructuralFeatureValue.

The semantics of AdjunctProperty are quite similar to those of BindingConnector. However this sub-clause excludes
adjunct for AssociationBlocks , InteractionUse and Variables, because f{UML does not support them. It excludes
also CallAction because it would need to either override the doAction() operation of CallActionActivation semantic
visitor class which would implies a significant amount of rework of some classes of the f{UML execution model that
would require a new version of this standard. The semantics of ClassifierBehaviorProperty is not included in this
annex for the same reason. The semantics of Adjunct for SubmachineState are also out of scope of this subclause in
order to avoid inducing a dependency on PSSM.

In order to support the semantics of AdjunctProperty, an AdjunctBinding abstract class is provided. It is specialized
for each kind of principal for which the semantics is described. That is: Parameter and ObjectNode. The
adjunctFeatureValue of an AdjunctBinding shall refer to the feature value that is the adjunct for that model element.
When the value referred by the principalValue property is modified, that value is copied to the value referred by
adjunctFeature.

Note: semantics for parameter adjunct property is provided for parameters owned by activities only.

In addition the following classes of the execution fUML model are extended (see Actions and Activities paragraphs
in this annex):

- for supporting adjunct of a Parameter: ActivityExecution

- for supporting adjunct of an ObjectNode: ObjectNodeActivation, ActivityParameterNodeActivation,
CentralBufferNodeActivation, ExpansionNodeActivation, PinActivation, InputPinActivation, OutputPinActivation

OMG Systems Modeling Language, v1.7 383

Supported stereotypes: BindingConnector, AdjunctProperty

H.3.3.2 Class descriptions

class [Package] Blocks [Blocks])

paps

operations
+isBoundTo(principal) : Boolean [1}{query}

+principalValue() +getO

+isBound(featureValue : FeatureValue [1]) : Boolean [1]{query}

operations

ue [1]) : FeatureValue [1]{query}

ue : F [
T +getOppositeBoundFeature(featureValue : FeatureValue [1]) : StructuralFeature [1]

ParameterAdjunctBinding

operations

+principalValue() : ParameterValue [1}{redefines principalValue}

ObjectNodeAdjunctBinding

operations

) : SysML_Obj

princip

[1){redefines principalValue}

+principalValue

ParameterValue

+principalValug| 1

SysML_ObjectNodeActivation

operations
+addToken(token : Token [1]){redefines addToken}
+removeToken(token : Token [1]) : Integer [1){redefines removeToken}
+clearTokens(){redefines clearTokens}

operations
+copy() : ParameterValue

SysML_Object

CS_Object «

operations

+createFeatureValues(){redefines createFeatureValues}
#new_() : Value{redefines new_}

Figure H.4. Blocks
H.3.3.2.1 AdjunctBinding

Description

This class is added in order to support semantics of adjunct properties. Note: bUML does not allow property
redefinition, only operation redefinition => principalValue shall be defined as an operation that will return an
untyped value (because ParameterValue and Link are not semantic visitors).isBound parameter shall also have no

type (for the exact same reason)

Generalizations

+ ExtensionalValue (from StructuredClassifiers)

Association Ends

+ adjunctFeatureValue : FeatureValue [1]

Operations

+ isBoundTo (in principal) : Boolean [1]

return this.principalValue

+ principalValue () [1]

principal;

Abstract operation intended to return the value of the principal

H.3.3.2.2 ObjectNodeAdjunctBinding

Description

384

OMG Systems Modeling Language, v1.7

This class is added in order to support semantics of adjunct properties for object nodes.
Generalizations
* AdjunctBinding (from Blocks)
Association Ends
+ principalValue : SysML_ObjectNodeActivation [1]
Operations
 principalValue () : SysML_ObjectNodeActivation [1] {redefines principalValue}

return this.principalValue;

H.3.3.2.3 ParameterAdjunctBinding
Description
This class is added in order to support semantics of adjunct properties for parameters. Note: the changes of
parameter values (and so update of the adjunct property) are managed within SysML_ActivityExecution by
overriding the setParameterValue() operation.
Generalizations
* AdjunctBinding (from Blocks)
Association Ends
+ principalValue : ParameterValue [1]
Operations

 principalValue () : ParameterValue [1] {redefines principalValue}

return this.principalValue;

H.3.3.2.4 SysML_FeatureValue
Description
Generalizations

+ FeatureValue (from SimpleClassifiers)
Attributes

 path : StructuralFeature [0..*]
H.3.3.2.5 SysML_Object

Description

OMG Systems Modeling Language, v1.7

385

This semantics visitor extends the PSCS CS_Object class in order to support semantics of proxy ports.
Generalizations

* CS_Object (from StructuredClassifiers)
Operations

+ createFeatureValues () {redefines createFeatureValues}

// Create empty feature values for all structural features of the types
// of this structured value and all its supertypes (including private
// features that are not inherited).

super.createFeatureValues () ;
SysML Locus locus = (SysML Locus) this.getExecutionLocus();

//Initialize the values for behavioral proxy ports only
for (int i=0; 1 < this.featureValues.size(); i++) {

Port port = (Port) this.featureValues.get (i)

if (port !'= null && locus.isProxyPort (port) {
if (port.isBehavior) {
port.values = new ValueList (this);

* new_ () : Value [1] {redefines new_}

// Create a new object with no type, feature values or locus.
SysML Object newObject = new SysML Object ();

H.3.3.2.6 SysML_ReferencePropertyPair
Description
Association Ends

+ property : Property [1]
» reference : Reference [1]

H.3.3.2.7 SysML_StructuredValue
Description
Generalizations

+ StructuredValue (from SimpleClassifiers)

386 OMG Systems Modeling Language, v1.7

Operations

+ addFeatureValuesForType (in type : Classifier, in oldFeatureValues : FeatureValue) {redefines
addFeatureValues}

// Add feature values for all structural features of the given type and
// all of its supertypes (including private features that are not

// inherited). If a feature has an old feature value in the given list,
// then use that to initialize the values of the corresponding new

// feature value. Otherwise leave the values of the new feature value
// empty.

// Set feature values for the owned structural features of the given
// type. (Any common structural values that have already been added
// previously will simply have their values set again.)
NamedElementList ownedMembers = type.ownedMember;
for (int j = 0; j < ownedMembers.size(); J++) {
NamedElement ownedMember = ownedMembers.getValue (J);
if (ownedMember instanceof StructuralFeature) {
this.setFeatureValue ((StructuralFeature) ownedMember,
this.getValues (ownedMember, oldFeatureValues), 0);

// Add feature values for the structural features of the supertypes
// of the given type. (Note that the feature values for supertype
// features always come after the feature values for owned features.)
ClassifierList supertypes = type.general;
for (int 1 = 0; 1 < supertypes.size(); i++) {
Classifier supertype = supertypes.getValue (i)
this.addFeatureValuesForType (supertype, oldFeatureValues);

+ getBoundElements (in feature) : ConnectableElement [0..*]

//Check whether there is a binding connector attached to this feature
ConnectableElementList = new ConnectableElementList () ;

if (feature instanceof ConnectableElement) ({
ConnectableElement connectableElement = (ConnectableElement) feature;

for (int i = 0; 1 < connectableElement.end.size(); i++) {
ConnectorEnd thatEnd = connectableElement.end.getValue (i) ;

Connector connector = (Connector) thatEnd.owner;

if |

OMG Systems Modeling Language, v1.7 387

return result;

H.3.3.2.8 ValueBinding
Description
This class is added in order to support semantics of binding connectors.
Generalizations
» ExtensionalValue (from StructuredClassifiers)
Association Ends
* boundFeatureValues : FeatureValue [2]
Operations
+ getOppositeBoundFeature (in featureValue : FeatureValue) : StructuralFeature [1]

StructuralFeature oppositeFeature = null ;
FeatureValue oppositeFeatureValue
this.getOppositeFeatureValue (featurevalue) ;

if (oppositeFeaturevValue != null) {
oppositeFeature = oppositeFeatureValue.feature ;

return oppositeFeature ;

+ getOppositeBoundFeatureValue (in featureValue : FeatureValue) : FeatureValue [1]

FeatureValue oppositeFeatureValue = null ;

if (this.boundFeatureValue.get (0) == featureValue) ({
oppositeFeatureValue = this.boundFeatureValue.get (1) ;

}

else if (this.boundFeatureValue.get (1) == featureValue) {
oppositeFeatureValue = this.boundFeatureValue.get (0) ;

return oppositeFeatureValue ;

 isBound (in featureValue : FeatureValue) : Boolean [1]

return this.boundFeatureValue.get (0) == featureValue ||
this.boundFeatureValue.get (1) == featureValue;
H.3.4 Loci

388 OMG Systems Modeling Language, v1.7

H.3.4.1 Overview

The Loci package includes extensions to f{UML CS_Locus and CS_ExecutionFactory in order to account for

new semantic visitors introduced by this specification. The extended Locus class also provides an additional set of

utility operations that facilitate the specification of semantic visitors' operations.

H.3.4.2 Class descriptions

class [Package] Loci[| &) Loci] J

operations
+instantiateVisitor(element : Element [1]) : SemanticVisitor [1]{redefines instantiate}

CS_ExecutionFactory SysML_ExecutionFactory

SysML_Locus

operations
+instantiate(type : Class [1]) : Object [1){redefines instantiate}
+isBlock(type : Class [1]) : Boolean [1]
+isInputFlowProperty(property : Property [1]) : Boolean [1]
+isProxyPort(port : Port [1]) : Boolean [1]

+isOutputFlowProperty(property : Property [1]) : Boolean [1]
CS_Locus +isFlowProperty(property : Property [1]) : Boolean [1]

+isBindingConnector(connector : Connector [1]) : Boolean [1]
+isAdjunctProperty(property : Property [1]) : Boolean [1]
+isClassifierBehaviorProperty(property : Property [1]) : Boolean [1]
+isConnectorProperty(property : Property [1]) : Boolean [1]
+isParticipantProperty(property : Property [1]) : Boolean [1]
+isPropertySpecificType(type : Classifier [1]) : Boolean [1]
+isDirectedFeature(feature : Feature [1]) : Boolean [1]
+isFullPort(port : Port [1]) : Boolean [1]
+isInterfaceBlock(type : Class [1]) : Boolean [1]
+isTriggerOnNestedPort(trigger : Port [1]) : Boolean [1]
+isRequiredDirectedFeature(feature : Feature [1]) : Boolean [1]
+isProvidedDirectedFeature(feature : Feature [1]) : Boolean [1]
+isltemFlow(flow : InformationFlow [1]) : Boolean [1]
+isConstraintBlock(type : Class [1]) : Boolean [1]
+isContinuous(parameter : Parameter [1]) : Boolean [1]
+isNoBuffer(node : ObjectNode [1]) : Boolean [1]
+hasRate(parameter : Parameter [1]) : Boolean [1]
+isOverwrite(node : ObjectNode [1]) : Boolean [1]
+hasRate(edge : ActivityEdge [1]) : Boolean [1]
+isContinuous(edge : ActivityEdge [1]) : Boolean [1]
+getAllValueBindings(featureValue : FeatureValue [1]) : ValueBinding [*]
+getObjectWIthFeatureValue(featureValue : FeatureValue [1]) : SysML_Object [1]
+getAllAdjunctBindings(callActionActivation)
+getAllAdjunctBindings(parameterValue)
+getAllAdjunctBindings(link)
+getAllAdjunctBindings(objectNode : SysML_ObjectNodeActivation [1])
+getMatchingFeatureValue(targetObject : StructuredValue [1], feature : FeatureValue [1])
+isMatchingFeature(sourceFeature : Feature [1], targetFeature : Feature [1]) : Boolean [1]

Figure H.S. Loci
H.3.4.2.1 SysML_ExecutionFactory

Description

This class extends the PSCS CS_ExecutionFactory class in order to support the semantics visitors added by this

annex.
Generalizations

* CS_ExecutionFactory (from Loci)
Operations

* instantiateVisitor (in element : Element) : SemanticVisitor [1] {redefines instantiate}

<<TextualRepresentation>>public instantiateVisitor (in element : Element) : SemanticVisitor { / TODO

return super.instantiate Visitor(element) ; }
// Extends CS_ExecutionFactory to instantiate
// SysML semantic visitors

SemanticVisitor visitor = null ;
if (element instanceof Activity) {

OMG Systems Modeling Language, v1.7

389

visitor = new SysML ActivityExecution() ;
1
else 1if (element instanceof ActivityParameterNode) {
visitor = new SysML ActivityParameterNodeActivation() ;
1
else if (element instanceof AddStructuralFeatureValueAction) {
visitor = new SysML AddStructuralFeatureValueActionActivation() ;
}
else if (element instanceof CallOperationAction) {
visitor = new SysML CallOperationActionActivation() ;
}
else 1f (element instanceof ClearStructuralFeatureAction) {
visitor = new SysML ClearStructuralFeatureActionActivation() ;
}
else if (element instanceof ExpansionNode) {
visitor = new SysML ExpansionNodeActivation() ;
}
else 1if (element instanceof InputPin) {
visitor = new SysML InputPinActivation() ;
}
else if (element instanceof ObjectNode) {
visitor = new SysML ObjectNodeActivation() ;
}
else if (element instanceof OutputPin) {
visitor = new SysML OutputPinActivation() ;
}
else 1f (element instanceof ReadStructuralFeatureAction) {
visitor = new SysML ReadStructuralFeatureActionActivation() ;
}
else 1f (element instanceof RemoveStructuralFeatureValueAction) {
visitor = new SysML RemoveStructuralFeatureValueActionActivation() ;
}

else if (element instanceof SendSignalAction) {

visitor = new SysML SendSignalActionActivation() ;
1
else {

visitor = super.instantiateVisitor (element) ;

}
return visitor ;
H.3.4.2.2 SysML_Locus
Description
This class extends the PSCS CS_Locus class in order to provide a set of utility operations for SysML stereotypes.
Generalizations

* CS_Locus (from Loci)

390 OMG Systems Modeling Language, v1.7

Operations

+ getAllAdjunctBindings (in callActionActivation) [0..*]
+ getAllAdjunctBindings (in link) [0..*]
+ getAllAdjunctBindings (in objectNode : SysML_ObjectNodeActivation) [0..*]

// Return the set of ajunct bindings at this locus which involve the
// given object node
getAllAdjunctBindings bindings = new AdjunctBindingList();
ExtensionalValuelList extensionalValues = this.extensionalValues;
for (int i = 0; 1 < extensionalValues.size(); 1i++) {
ExtensionalValue value = extensionalValues.getValue (i) ;
if (value instanceof ObjectNodeAdjunctBinding) {

ObjectNodeAdjunctBinding binding = (ObjectNodeAdjunctBinding)
value;

if (binding.isBound (objectNode)) {
bindings.addValue (binding) ;

return bindings;

+ getAllAdjunctBindings (in parameterValue) [0..*]
// Return the set of ajunct bindings at this locus which involve the
// given parameter
getAllAdjunctBindings bindings = new AdjunctBindingList();
ExtensionalValuelist extensionalValues = this.extensionalValues;
for (int i = 0; i < extensionalValues.size(); i++) {

ExtensionalValue value = extensionalValues.getValue(i);

if (value instanceof ParameterAdjunctBinding) {
ParameterAdjunctBinding binding = (ParameterAdjunctBinding) value;

if (binding.isBound(parameterValue)) {
bindings.addValue (binding) ;

return bindings;

+ getAllValueBindings (in featureValue : FeatureValue) : ValueBinding [0..*]

OMG Systems Modeling Language, v1.7 391

392

// Return the set of value bindings at this locus which involve the
// given feature value

ValueBindingList bindings = new ValueBindingList () ;

ExtensionalValuelList extensionalValues = this.extensionalValues;
for (int 1 = 0; 1 < extensionalValues.size(); i++) {
ExtensionalValue value = extensionalValues.getValue(i);

if (value instanceof ValueBinding) {
ValueBinding binding = (ValueBinding) wvalue;

if (binding.isBound(featureValue)) {
bindings.addValue (binding) ;

return bindings;

getMatchingFeatureValue (in targetObject : StructuredValue, in feature : FeatureValue)

// First check whether the property provided as a parameter is a flow
property

// or a required feature

// 1if so look for the links attached to the targetObject

// for each link found, check whether there is a property on the other
side that is a "matching" flow property

// according to SysML, "matching" flow properties have compatible
directions and conforming types

//
FeatureValuelist matchingFeatures = new FeatureValuelList();
if (feature instanceof Property && (this.isOutFlowProperty((Property)
feature))
|| this.isRequiredFeature (feature) {
LinkList links = new LinkList();

ExtensionalValuelList extensionalValues = this.extensionalValues;

for (int 1 = 0; i < extensionalValues.size(); i++) {
ExtensionalValue value = extensionalValues.getValue (i) ;

if (value instanceof Link) {

Link link = (Link) wvalue;
FeatureValuelList linkFeatureValues = link.getFeatureValues/();
FeatureValue candidateFeatureValue = null;

OMG Systems Modeling Language, v1.7

if (linkFeatureValues.getValue(0) .equals (targetObject)) {
candidateFeatureValue = linkFeatureValues.getValue(1l);

} else if (linkFeatureValues.getValue(l).equals(targetObject))

candidateFeatureValue = linkFeatureValues.getValue (0);

if (candidateFeaturevValue != null) {
//now we can check whether this feature "matches"
if (this.isMatchingFeature (feature,
candidateFeatureValue. feature)) {
matchingFeatures.addValue (candidateFeatureValue) ;

return matchingFeatures;
+ getObjectWIthFeatureValue (in featureValue : FeatureValue) : SysML_Object [1]

// Return the object at this locus which owns the
// given feature value

SysML Object object = null;

ExtensionalValuelList extensionalValues = this.extensionalValues;
int i = 0;

while (i < extensionalValues.size() && object = null) {

ExtensionalValue value = extensionalValues.getValue (i) ;

if (value instanceof SysML Object) {

SysML Object candidate = (SysML Object) value;
FeatureValuelist featureValues = candidate.featureValues;
int j = 0;
while (j < featureValues.size() && object = null) {
if (featureValues.get(j) == featureValue) {
object = candidate;
}
J++;
}
}
i++;

return object;

OMG Systems Modeling Language, v1.7

{

393

394

hasRate (in edge : ActivityEdge) : Boolean [1]

Check whether the activity edge has the Rate stereotype applied. // The algorithm of this operation is
implementation specific

hasRate (in parameter : Parameter) : Boolean [1]

Check whether the parameter has the Rate stereotype applied. // The algorithm of this operation is
implementation specific

instantiate (in type : Class) : Object [1] {redefines instantiate}

// If the type is a Block, instantiate a SysML Object.
// Otherwise behaves like in CS_Locus
if (isBlock(type)) {
Object object = null;
object = new SysML Object () ;
object.types.add (type) ;
this.add (object);
object.createFeatureValues () ;
this.assignBehaviorProxyPorts (object) ;
return object;
}
else {
return super.instantiate (type);

}

isAdjunctProperty (in property : Property) : Boolean [1]

Check whether the property has the AdjunctProperty stereotype applied // The algorithm of this operation
is implementation specific

isBindingConnector (in connector : Connector) : Boolean [1]

Check whether the connector has the Block stereotype applied. // The algorithm of this operation is
implementation specific

isBlock (in type : Class) : Boolean [1]

Check whether the class has the Block stereotype applied. // The algorithm of this operation is
implementation specific

isClassifierBehaviorProperty (in property : Property) : Boolean [1]

Check whether the property has the ClassifierBehaviorProperty stereotype applied // The algorithm of this
operation is implementation specific

isConnectorProperty (in property : Property) : Boolean [1]

Check whether the property has the ConnectorProperty stereotype applied // The algorithm of this
operation is implementation specific

isConstraintBlock (in type : Class) : Boolean [1]

Check whether the class has the ConstraintBlock stereotype applied. // The algorithm of this operation is
implementation specific

isContinuous (in edge : ActivityEdge) : Boolean [1]

Check whether the activity edge has the Continuous stereotype applied. / The algorithm of this operation
is implementation specific

isContinuous (in parameter : Parameter) : Boolean [1]

Check whether the parameter has the Continuous stereotype applied. // The algorithm of this operation is
implementation specific

isDirectedFeature (in feature : Feature) : Boolean [1]

Check whether the feature has the DirectedFeature stereotype applied // The algorithm of this operation is
implementation specific

isFlowProperty (in property : Property) : Boolean [1]

Check whether the property has the FlowProperty stereotype applied // The algorithm of this operation is
implementation specific

OMG Systems Modeling Language, v1.7

+ isFullPort (in port : Port) : Boolean [1]
Check whether the port has the FullPort stereotype applied. // The algorithm of this operation is
implementation specific

+ isInputFlowProperty (in property : Property) : Boolean [1]
Check whether the property has the FlowProperty stereotype applied and the flow direction is "in" / The
algorithm of this operation is implementation specific

+ isInterfaceBlock (in type : Class) : Boolean [1]
Check whether the class has the InterfaceBlock stereotype applied. // The algorithm of this operation is
implementation specific

+ isltemFlow (in flow : InformationFlow) : Boolean [1]
Check whether the information flow has the ItemFlow stereotype applied. // The algorithm of this
operation is implementation specific

+ isMatchingFeature (in sourceFeature : Feature, in targetFeature : Feature) : Boolean [1]

//"Matching" applies to flow properties and directed features
//Flow properties "match" when they have opposite directions and
compatible types. That is:

// - the source flow property shall be out or inout

// - the target flow property shall be in or inout

// - the type of the source flow property shall be the same or a
specialization of the type of the target flow property

boolean result = false;
boolean directionChk = false
boolean typeChk = false;

if (this.isFlowProperty (sourceFeature) &&
this.isFlowProperty (targetFeature)) {

FlowDirectionKind srcDirection = this.getDirection (sourceFeature);
FlowDirectionKind tgtDirection = this.getDirection (targetFeature);
Type srcType = ((StructuralFeature) sourceFeature) .type;

Type tgtType ((StructuralFeature) targetFeature) .type;
directionChk = (srcDirection == FlowDirectionKind.out || srcDirection
== FlowDirectionKind.inout) &&
(tgtDirection == FlowDirectionKind.in || tgtDirection ==
FlowDirectionKind. inout) ;

typeChk = (tgtType == null || srcType != null &&
srcType.conformsTo (tgtType)) ;

result = directionChk & typeChk;
}
else {
if (this.isDirectedFeature (sourceFeature) &&
this.isDirectedFeature (targetFeature)) {
FeatureDirectionKind srcDirection =
this.getFeatureDirection (sourceFeature) ;
FeatureDirectionKind tgtDirection =

OMG Systems Modeling Language, v1.7 395

396

this.getFeatureDirection (targetFeature);

Type srcType = ((StructuralFeature) sourceFeature) .type;
Type tgtType ((StructuralFeature) targetFeature) .type;

directionChk = (srcDirection == FeatureDirectionKind.provided ||
srcDirection == FeatureDirectionKind.provrequired) &&
(tgtDirection == FeatureDirectionKind.required || tgtDirection ==

FeatureDirectionKind.provrequired) ;

if (sourceFeature instanceof BehavioralFeature and targetFeature
instanceof BehavioralFeature) {
BehavioralFeature sourceBFeature = (BehavioralFeature)
sourceFeature;

BehavioralFeature targetBFeature
targetFeature;

(BehavioralFeature)
boolean paramChk = sourceBFeature.ownedParameter.size () ==
targetBFeature.ownedParameter.size () ;

for (int 1=0; paramChk && i <
sourceBFeature.ownedParameter.size (); i++) {

Parameter sourceParam sourceBFeature.ownedParameter.get (1) ;

Parameter targetParam = targetBFeature.ownedParameter.get (i)

paramChk = paramChk &&
sourceParam. type.conformsTo (targetParam. type) ;

paramChk paramChk && sourceParam.lower >= targetParam.lower;

paramChk = paramChk && sourceParam.upper <= targetParam.upper;

paramChk paramChk && sourceParam.direction ==
targetParam.direction;

}

result = directionChk && paramChk;
}
else {
if (sourceFeature instanceof StructuralFeature and targetFeature
instanceof StructuralFeature) {

StructuralFeature sourceSFeature = (StructuralFeature)
sourceFeature;

StructuralFeature targetSFeature = (StructuralFeature)
targetFeature;

typeChk = sourceSFeature.type.conformsTo (targetSFeature.type)
& &

OMG Systems Modeling Language, v1.7

sourceSFeature.lower >= targetSFeature.lower &&
targetSFeature.upper <= targetSFeature.upper;

result = directionChk && typeChk;

return result;

+ isNoBuffer (in node : ObjectNode) : Boolean [1]
Check whether the object node has the NoBuffer stereotype applied. // The algorithm of this operation is
implementation specific

+ isOutputFlowProperty (in property : Property) : Boolean [1]
Check whether the property has the FlowProperty stereotype applied and the flow direction is "out" // The
algorithm of this operation is implementation specific

+ isOverwrite (in node : ObjectNode) : Boolean [1]
Check whether the object node has the Overwrite stereotype applied. // The algorithm of this operation is
implementation specific

+ isParticipantProperty (in property : Property) : Boolean [1]
Check whether the property has the ParticipantProperty stereotype applied // The algorithm of this
operation is implementation specific

+ isPropertySpecificType (in type : Classifier) : Boolean [1]
Check whether the classifier has the PropertySpecific stereotype applied // The algorithm of this operation
is implementation specific

* isProvidedDirectedFeature (in feature : Feature) : Boolean [1]
Check whether the feature has the DirectedFeature stereotype applied with direction "provided" // The
algorithm of this operation is implementation specific

+ isProxyPort (in port : Port) : Boolean [1]
Check whether the port has the ProxyPort stereotype applied. // The algorithm of this operation is
implementation specific

+ isRequiredDirectedFeature (in feature : Feature) : Boolean [1]
Check whether the feature has the DirectedFeature stereotype applied with direction "required" // The
algorithm of this operation is implementation specific

+ isTriggerOnNestedPort (in trigger : Port) : Boolean [1]
Check whether the port has the TriggerOnNestedPort stereotype applied. // The algorithm of this operation
is implementation specific

H.3.5 Ports and Flows
H.3.5.1 Overview

This clause specifies executable semantics for FlowProperty and ProxyPort. With regard to the executable
semantics, a FullPort is the same a a classical part.

Writing a value to an "out" flow property is the same as writing this value to a matching "in" flow property, if there
is one and only one. This can be realized by extending WriteStructuralFeatureActionActivation using a mechanism
similar to the one use for the binding connectors, taking care to avoid infinite loop in case of "inout" flow properties.
In order to avoid inconsistencies an additional constraint prevents flow properties to have a composite aggregation

OMG Systems Modeling Language, v1.7 397

kind. It is assumed that a flow may occur if there is a link, whatever the way it has been created. So, there is no need
to retrieve the corresponding connector.

A proxy port stands for another element in the model that can be: either the port owner, if the port is behavioral (i.e.
its isBehavior property is true), or a part of the block owning the port, if it is not behavioral. This can be realized by
initializing the value of a proxy port with a reference to its owner, if it is behavioral, or with the the reference to its
bound part otherwise. It is managed in the extension SysML_Object.

In order to avoid inconsistencies with proxy ports, the following constraints shall be enforced.

+ In case of a behavioral port, the type of that port shall also classify the owner of the port
* A non behavioral proxy-port shall be bound to a part of its owner
+ In case of a non behavioral port, the type of the port shall also classify the part to which that port is bound

Supported stereotypes: FlowProperty, ProxyPort

H.3.5.2 Additional Constraints

behavioral port owner has compatible type
For a behavioral port, the type of that port shall also classify the owner of the port

context ProxyPort inv: self.base Port.isBehavior implies
self.base Port.class.conformsTo (self.base Port.type))

bound part has compatible type
In case of a non behavioral port, the type of the port shall also classify the part to which that port is bound

context ProxyPort inv: not self.base Port.isBehavior implies
BindingConnector.alllInstances () ->exists(b | b.base Connector.end->exists (el
| el.role = self.base Port) and b.base Connector.end->exists(e2 | e2.role <>
self.base Port and eZ.role.type.conformsTo (self.base Port.type)))

bound to owner part
A non behavioral proxy-port shall be bound to a part of its owner

context ProxyPort inv: let internalParts: Set (Property) =

self.base Port.owner.allFeatures() ->selectByKind(Property)->reject (f |
f.oclIsKindOf (Port) in not self.base Port.isBehavior implies
BindingConnector.alllInstances () ->exists(b | b.base Connector.end->exists (el
| el.role = self.base Port) and b.base Connector.end->exists(e2 | e2.role <>
self.base Port and internalParts->includes (e2.role))

flowproperty not composite
Flow properties shall not have a composite aggregation kind

context FlowProperty inv: not self.base Property.isComposite

provrequired not supported
No semantics is specified for features with direction providedRequired

context Feature inv: let df: DirectedFeature =

398 OMG Systems Modeling Language, v1.7

DirectedFeature.allInstances()->any(f | f.base Feature = self) in
df.oclIsUndefined() or df.direction <> DirectedFeatureKindffprovidedRequired

H.3.5.3 Class descriptions

OMG Systems Modeling Language, v1.7 399

