An OMGP® Decision Model and Notation™ Publication

OBJECT MANAGEMENT GROUP®

Decision Model and Notation™

Version 1.3

OMG Document Number: dtc/19-10-03
Release date: ***
Standard document URL: https://www.omg.org/spec/DMN

Normative Machine Consumable File(s):
https://www.omg.org/spec/DMN/20180505/DMN12.xsd
https://www.omg.org/spec/DMN/20180505/DMNDI12.xsd
https://www.omg.org/spec/DMN/20180505/Dl.xsd
https://www.omg.org/spec/DMN/20180505/DC.xsd
https://www.omg.org/spec/DMN/20180505/DMN12.xmi
https://www.omg.org/spec/DMN/20180505/DMNDI12.xmi
E]
Informative Machine Consumable File(s):
\ https://www.omg.org/spec/DMN/20180505/examples.zipE

Decision Model and Notation 1.3 1

Alan Fish, 10/23/19
To be replaced with URLs to:
DMN13.xsd dtc/19-10-05
DMNDI13.xsd dtc/19-10-06
DMN13.xmi dtc/19-10-07
DMNDI13.xmi dtc/19-10-08
DMN13_MagicDraw.xml dtc/19-10-09
DMNDI13_MagicDraw.xml dtc/19-10-10

Alan Fish, 10/23/19
To be replaced with URLs to:
DMN13.mdzip dtc/19-10-11
DMNDI13.mdzip dtc/19-10-12
DMN 1.3 - examples.zip dtc/19-10-13

http://www.omg.org/spec/DMN
https://www.omg.org/spec/DMN/20180505/examples.zip
https://www.omg.org/spec/DMN/20180505/DMNDI12.xmi
https://www.omg.org/spec/DMN/20180505/DMN12.xmi
https://www.omg.org/spec/DMN/20180505/DC.xsd
http://www.omg.org/spec/DMN/20180505/DI.xsd
https://www.omg.org/spec/DMN/20180505/DMNDI12.xsd
https://www.omg.org/spec/DMN/20180505/DMNDI12.xsd
https://www.omg.org/spec/DMN/20180505/DMNDI12.xsd
https://www.omg.org/spec/DMN/20180505/DMNDI12.xsd
https://www.omg.org/spec/DMN/20180505/DMNDI12.xsd
https://www.omg.org/spec/DMN/20180505/DMN12.xsd
http://www.omg.org/spec/DMN
http://www.omg.org/spec/DMN

Copyright © 2018, Decision Management Solutions

Copyright © 2018, Escape Velocity LLC

Copyright © 2018, Fair Isaac Corporation

Copyright © 2018, International Business Machines Corporation
Copyright © 2018, Knowledge Partners International

Copyright © 2018, KU Leuven

Copyright © 2018, Model Systems Limited

Copyright © 2018, Oracle Incorporated

Copyright © 2018, TIBCO Software Inc.

Copyright © 2018, Object Management Group, Inc.

E

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or

Decision Model and Notation 1.3 2

Alan Fish, 10/23/19
To be updated

mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®,
and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

Decision Model and Notation 1.3 3

http://www.omg.org/legal/tm_list.htm

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
on the main web page https://www.omg.org, under Documents, Report a Bug/Issue.

Decision Model and Notation 1.3 4

https://www.omg.org/
https://www.omg.org/
https://www.omg.org/

Table of Contents

Y 670 0 14
LA 00 13 (0] 1 10T 11 Lo 3 16
2.1COoNFOrMANCE L@VELS...cciiiiiisnisismssiss R 16
2.2General conformance reqUIreMENTt........cuoimsssmssisssassssnssssssassssasasssns 16
2.2.1VISUAL PP EATANCE ... reusreuseesseeseesseesseesseesssesssessseesssessesssesssesssessssessss e sssessseesssessesssesssesssessssesasesssasssasssssssessnsnssees 16
2.2. 2D ECISION SEIMANTICS. cieureeeeerereeressesseesesens 17
2.2.3Attributes and MOdEl ASSOCIATIONS. ... eureueeureeecsreeseessetseessese e sees et sses s ss s s s ssse s 17

B3 =3 2] o) o Lo 18
B 00 000 g 10 18

3. 2ZNON-NOIMATIVE. ..t R AR RS A AR R AR AR R AR R AR AR R R AR R AR R SRR RS 19
4Additional INfOrmation......cim s —————————————————— 22
4.1 ACKNOWIEAGEIMENLES.....cuiuicnismssssssssssssss s s e A RS RAEReEER e AR n R e 22
4.2TPR aNd PatentS.....coiusiiiuismmssismssisssssssssississssssss s st sssss s s s s RS 22
4.3Guide to the SPecCifiCation........ccuccrrrrmirsrs s ———————————————— 23
S5INtroduction t0 DMN.......cmimmmssssssss s s sssssnsns 25
ST 00 1 1.« 25
5.2Scope and USES Of DIMN......cciocumumimsmssmsmssssssssssssssssssssssssssssssssssss s sss s sssassssss e sssssssssssssssssessssssssss ssnssnns 27
5.2.1Modeling human deciSioN-MaKiNg.......ccoorunerrreneeeneiseseeeseeseessseseesse s sessssssessesss s sessssesssssssssees 28
5.2.2Modeling requirements for automated deciSion-MaKing........couemeeneeseesreesneeeseesseesssesnsessessseesssessesnes 28
5.2.3Implementing automated deciSioN-MaKING......ccccurerrreremeeeeseerseeeseeesessesssesssessseessessssesssesssesssessssssssssseens 29
5.2.4Combining applications Of MOAEING ..ot ses e s ees 29

LT T 2 2 T3 Tul o0) 1 Lo 0 . 30
5.3.1DeCiSion reqUIr€MENtS LEVEL..... e esess s sess s ss s sseses 30

ST T D=0l 53 (o) o U3 0= (ol U377 U 32

5. 3.3 D CISION SEIVICES. c.ucuriereeuerseesreaseeseeeseessesse s s s ssesseesse e ssse s s seE s s s R RS AR AR e R A bbbt bt es 33
6Requirements (DRG and DRD).....cccccrmsmmmmsmsmssssmssnss 37
LS 0 0000 o071 U0 T o 37

6. 2ZNOTATION. .1 ————— 37
6.2. 1DRD EIBINENTS. .. cuureueeuseeseeseesseesseesseesseesssesssesssesssssssssssesssesssessssssssesasesssssessssessssssssssesssessssssssssasssssesssassssssssssssssssees 39

L3070 B D 1ot) 1) o154 o] =L o) o P00 PP 39
6.2.1.2Business Knowledge Model NOTatioN.. ... ssas 39
6.2.1.3INPUL DAtA NOTALION ...ttt s bbb bbb 39

Decision Model and Notation 1.3 5

6.2.1.4KN0WIEAZE SOUICE NOTAION......ccereeereeeeeeesseeeesseesseeseesseessess s e s s s s s s s s s s e R e s e 40

LoD) D L0 LR =) 44U o 40
6.2.2.1Information REQUIreMENt NOTAtION. ..o ceeeererrees e sessses s s ses s s s s ssss st ens 40
6.2.2.2Knowledge REQUITEMENT NOTATION.uuceueeerreeeeseersseesseessseessessssesssessssesssssssess s sssesssse s s ss s s ssssssssssssessesssesns 40
6.2.2.3Authority ReQUITeMENt NOTAtION. ..o cceceereereereesreesesseesseesses s seesses s s sees s s s sssessss s ssse s s sesssessssessenees 41

LSRR 000} 4§ o L=Totm [o) o 10 o8] U=T 3N PO 42

6.2.4Partial views and hidden information...... s 43

6.2. 5D B CISION SEIVICE...cuueueureeureereesresseisessseseesseesse s e e s e es b es s s s Ea b Es e s £ R s bbb bbbt 44

6.3MEtaAMOAEL......ccce i ——————————————————_———————————— 47

6.3.1DMN Element MetamOdel......cooereeeereereesesseeeesssesessessessessesssseessessssssessssssssssssssssesssessesssessssssessssessssssseases 47

6.3.2DefiNitions MEtAMOAEL. ..o s s s 48

LECTOCT 000 oo ol o0 T3 =142 oL 1= O P 50

6.3.4Element Collection MetamMOAEl...... ottt s s e s s 51

6.3.5DRG Element MetamOAel. ... crierereereereineesseeseessessesssessessesssesssssesssesse s ssss s s ssss st sssssessssssessssanees 51

6.3.6ATEIfACt MELAIMOAEL ...t e 52
LTS ST 3o Yol - U (o) o TP SPTTTT 52
LT S0/ €3 0 | o T 53
6.3.6.3TEXE ANIIOTALION . ceeuureurereueesrerseesseessesseesseessesseesseesse s essessses e s s s eR s R s e E s R R AR AR R bbb R n s 53

6.3.7DECISION METAIMOAEL.. .o rierieeeieeceeeect ettt R bbb 54

6.3.8Business Context Element Metamodel.......o e ssssssessssesssssssssss s sssessssssssessssss 56

6.3.9Business Knowledge Model Metamodel.....eeeneenireemeesneeseesseesssesssessssessesssssssesssesssessssssssssssesssessenss 58

6.3.10DeCiSion SErviCe METAMOAEL.ccriuieureeieureereesesseesessesessesses s ss s bbb s b s s st 60

6.3.11Input Data MEtAMOAEL........cueereeeeeree ettt es et s s es e s s bbbt st 61

6.3.12Knowledge SoUrce MeEtamMOAEL........ouueeeueeenneeeeeeeseisessesssees s sssessssssssssssssss s sssasssesssesssssssssssessessenss 62

6.3.13Information Requirement MetamoOdel........coererreseeseesseesseeesesesessessesssessseesssesseesssssssessesssessssssssssns 63

6.3.14Knowledge Requirement Metamodel.......oreneneineineeneeseiseesesss e sessesss s ssssssssssssssssssssessens 64

6.3.15Authority Requirement Mmetamodel...........o e sses e sseseens 65

LT Y 5 (=) 4 U] 1 o) 1 720N 65
6.3.16. 1 EXLENSIONELEINIENTS.cuuieeeeeeesseeseesseeseessseessesssess e es e ssse bbb SRR 66
6.3.16. 2 EXtENSIONALIIIDULEevuctreeereinetseesse s ses s s sses s bbb s s s bbb bbb 66

LI 3 00 €) 1 11 1) (2 S 66
7Relating Decision Logic to Decision Requirements...........oummmmmmmmmmmmmmmssssssssss 67
7% 1 000 o070 L0 U0 o 67
A2 [0 15 T) o R 69

Decision Model and Notation 1.3 6

0 D540 1) (0 0 PP 69

7.2.2B0XEA lItEIal @XPIESSION...ceiereeeeceseeeesreeeessesseesseseessesseesse bbb bbb s s R b et 70
7.2.2.1Typographical String HEETALS.....ouceririeseerseessersees s sesssssss s ssssess s ssss b sess s 70
7.2.2.2Typographical date and time LHEETALS. ... eeeeereeseersessseessesssessssess s sssessssessseessse st ssssssssssse s s sss s sases 71

A1 2100 Lo B0 0177 Tor- o) o VUSSP 71

7% 31 = 113 10 1 = 71

7.3. 1EXPreSSion METAMOGEL ... eriereereeeiseeseeseeseessessessessessss s s s sss s ss bbb s bbb 72

7.3.2UNAryTests MEtAMOAEL ...ttt es e ssses e es s s s ssss s st 73

7.3.3ItemDefinition MEtAMOEL......c e s s b 73

7.3.4Informationltem MEtaMOAEL. ... s ss st e 76

7.3.5Literal eXpresSion MEtaMOAEL. ... e ssesse s ess s s esse s ssse s sassse bbbt 77

7.3.6INV0CAtiON MELAMOAEL......o ettt es s e s s s a s 78

R T2 00T 10T oo =] Vo o Lo T U=) UOPE OO 79

8DeCiSION TabIe.....cciiic i —————————————_———— 81
S 0 1T L () T 81
£ 20720 101 1 T) o 84

8.2.1LINE SEYIE AN COLOT ... euiuiereereieeeseteieste ettt essee s s s s bbb s R s bbbt 85

LIV Lo (o) g) 01 - L o) o T OO 85

8.2. 3 NP UL EXPIESSIONS ..o cueerreueeresresersesrsessesss s e sessess s s s s s s s s e s s RS s se R s R R e s R e b s e e ne R R eran s 87

8. 2.4 INPUL VALUES.c..urreesreeseeseerseereeeseesssesssesssessseessees s see s ssse s s s8R RS R SRR R 88

8.2.5Information Item names, output labels, and output component NAMES.........couereereenremrerreeereeeseanens 88

B.2.6MUILIPIE OULPULS....curieeeereereeuretseeses et seesses s s esses s s s s s s R R R s e s 88

8.2. 7 NP UL EINIETIES .. eueereereeereeeser s s st st s e s s e s se R s se R st se R s st se R b b e b nEnE e e 89

8.2.8Merged INPUL ENIIY CEIIS ... sees s es s s e ss e s es s 89

LS 85 10 1L 010 L= o1 o)/ ST 90

B.2. LOHIE POLICY . eureuueeureeeesreeseessesseessesssessessesssesse s essessees s s s s e s bR R R ER £ seEA s se R et et 91

8.2.11Default OULPUL VAIUES....c.viiccererrnesss s ssssss s ssesss st ssssssssssss s ssss s s ssss s ssssssssssssssssssssssssssnssssnes 93

o 2031 = 141 10 1 = 94

8.3.1DeciSion Table MEtamMOGEL....... ittt sses bbb s bbb st 94

8.3.2Decision Table Input and Output MeEtaMOAEL.........ocreeiereereenrerreeecrreeec e seasesseeaas 96

8.3.3Decision Rule MEtamOdel.....oeereeereeeneeiereesseessesssesss st sesssss s ssssssssesssssss st st sesssss s ssens 97

E2 227 3 00 €) 1 11 1) (23 98
9Simple Expression Language (S-FEEL)......ccocuummmnmmmmmssens 102
£2 20 10 4L o010 11 T4 P 102

Decision Model and Notation 1.3 7

O.2S-FEEL SYNUEAX..0iiitiimsmismsmssissnisssnssisssissssssssssssssssssssssssssssssssss s s st ss s s s sas s sssassssasas s sasssssssssnsassnsssssnnnns 102

£ JBC TR 20 08 08 DR B 1 Ty 103
9.4 S-FEEL SEIMANTICS.ccuiiiismsmsnisssisssssssssnssismsssssssssssssssssssssssssssssnssssssss s sasasssssssss s sasssasssssss sasasassasssssnsnssnssansssnnns 104
9.5USe Of S-FEEL @XPIeSSIONS...ciiiiesmsisessssssssssmsmss sssssssssssssssssssssssssssssssasassansssnsss 105
SO TSI 1 7<) 40 00 L3 0 0V) o U PP 105
0TS T A 4N 0 Tor= T (o) T 105
0.5.3DECISION LADIES....couiiricriircrss s 105
10Expression Language (FEEL)........cccoummmmssmsssass 106
10, 1INtrOAUCHION. it RS R AR R AR AR R AR RS 106
L0272] = U L0 . 106
10.2. 1BOXEA EXPI@SSIONS. .uururreuseesseesseeseesseesseesssesssessesssesssessseesseessessssessessssesssssssesssesssesssasssesssessssssesssesssesssesssesssessenes 106
B2 T B D 1T 1 o) 4T 1] U= PP 107
10.2.1.2BOXEA FEEL @XPIESSION. ..o ceureeureeseesersesseessesssesseessesssessesssesssessesssesssessssssssssesssessasssssssessasssasssessssssssssssssssssssssssessssssssses 107
10.2.1.3BOXEA INVOCATION.c..ivuriruieesirseeseersisssessssssssssssss s s bbb RS R R 107
10.2.1.4B0OXEA CONTEXE...ouirireiirirsississiessss s bbb bbb RS S SRR S e s 108

B Y 2 o) T N 5] T 112
10.Z2. 1. 0REIATION et R s 112
10.2.1.7B0XEA FUNCHOMN .ttt s bbb bbb 112
0T 2) X P 113
10.2.2.1COMPATISON Of TANGES...cuuuieresrersersssssssesssssssssssssssessssssss s sss s sss b s bR SRR SRR SRR 113
10,2, 2. 2N UINIDETS . covescerseeruseerseeesseeesssessssesssseessssesesseeess s ses s as R E SRS S RS R R R SRR R Rt e R 114
10.3Full FEEL Syntax and SemMantiCs........ouimmimmmsmsmmmmmssssmssassns 114
00 T I 4 115
10.3. 1. 1Grammar NOTATION. ciuesiriss st bbb RS R e R R 115

B T 7 € =0 44U o= gl U (=P 116
10.3.1.3 Literals, data types, DUilt-in fUNCHONS ...t sessssesssessssess s sssess s sssesssssssssssssses 119
10.3.1.4Tokens, Names, and WHite SPACE.......ccuuuereereereesreeseeseessesssessessessse s essssssssssessesssessssssesssesssssssssss s ssssssssssesssssssnes 119
10.3.1.5Contexts, Lists, Qualified Names, and CONtEXt LiSTS....counrnernenenenenssnsinsssans 119
10.3. 1. O AIMNDIGUILY . cerureeeeeeersseeesseessseeesseeesssesssseee s ss e ss e ss e ss R RS R R 120
110.3. 2S5 IMANTICS. ..ottt bbb RS b 120
10.3.2.15emMantiC DOMaIN . s bR 120
10.3.2.2Equality, Identity and EQUIVAIEIICE.cuieeriermminmeinessssnssses 121
10.3.2.3Semantics of literals and datatyPes. ... 121
110.3.2. 3. INIUINIDET ...ttt es s bbb s R R AR 121

B0 B0 1771w | o =20 121

Decision Model and Notation 1.3 8

10.3.2.3.3D00L8AN.c...cc A b bbb bbb bR R bR bbb bbb a 122

110.3. 2.3 48IIMIE. . evevuseeeseeesseeessseesssesessseess s eess e s ses s R s R RR RS RS RR RS RR R R R R R SRR R 122
0 070G T8 Y - PP 122
10.3.2.3.6daLE-TIIME . coucreeererris s R R 122
10.3.2.3.7days and time AUIAtION.ueeerreesreeeesseessesseesseessesssesseessesssessesssesssessesssesssessesssesssessesssesssessesssssssssesssessessssenss 123
10.3.2.3.8years and MONThS AUIAtION. ... sseessessse s sssesses s ssss s s ssss s s sssssases s sesnnaas 123
10.3.2 4T EIMATY LOZIC. 1uuietureeueeereeseerssesssessseesssessssesssess s ees s ss et es bR RS R R R R R R R bbbt 123
10.3.2.5LiStS AN fIlEETS. ot 123
B T 00 01 - 124
B0 0 2 4V 124
B 003 0 o o o) o 30O 125

10.3.2.9Relations between types

10.3.2.9.1Type Equivalence........
10.3.2.9.2TYPE CONTOITIIANCE. c..v.crurrruseerseeeseessessseesseesssessseesssessssssssesssessssesssessssesssessssesssessssessssssssesssesasesssessssessssssssssssesssssans
110.3.2.9. 3EXAIMNPIES .. ccruireerueeseersiss st sees s s s RS RR R R R R R R R R R e 128
10.3.2.9.4TYPE COMVETSIONS.c.uueureureueurirsersesssssssssesssssessessessssssssesssssssssssssssessessessssssssssasssssssssssssessessessssssssssasssssssssssessssssessssnas 131
10.3.2.9.4. TEXAIMNPIES....iuuirireierssersessssss s ssssssssssss s s sess s sas bbb bR 131
10.3.2.10DECISION TADLE....cuiceeereiiteeessiseessesssesses st sses e sses s sssssss s s ss s s s bbb 132
10.3.2.11Scope and CONLEXL STACKuurirueeriesieersirssesssstsssesss s sess st ss s s s s s bbb 134
10.3.2.1 1. 1L0CA] CONEEX L. rrurieurermirmeessserssessssesssesssssssesssessssessssssssess s ss s s R Rt 134
OIS 700 R 7 €3 (o] o F= 1 00 =5 PP 134
10.3.2.11.3BUIIE-IN CONEEX L. rrtuiruirereerirseersess st sess s s s bbb 134
10.3.2.11.4SPECIAL CONETEXE.eurrurreureesrereessersserseessessseseessesssesseessesssessssssassseseessassse s s sse s s bR b see R R e R s bbb 134
10.3.2.12Mapping between FEEL and other domains.........ccueessssssesssssssssssssssssssssesssssssees 135
10.3.2. 13FUNCLION SEMANTICS.c.uiiuuireeisiriss e b bbb s 135
10.3.2.13. 1BUIIt-IN FUNCHIONS. oottt sess s sssssssss s ss s ssssssssssss s ssssss s s 136
10.3.2.13.2 User-defined fUNCHONS. ... s ssssssssssssssss 136
10.3.2.13.3 Externally-defined fUNCIONS. ...t seessesssesssssssssesssssessssssesssssssssssssssssesssssssssesssssses 137
0TS 207 RC T30 20D Lot (o) 010 4= o o < 137
10.3.2.13.5 Positional and Named PAramEterS. ... eeeereessersesseessesssessesssessessesssesssessssssssssessasssssssessessssssssssssesses 137

10.3.2.14For loop expression

10.3.2. 1 5SEMANTIC MAPPITIES cverrrererreesersrerseesserssesssessesssesssessesssesssessasssesseessesssssssessesssssssessesssesssessasssesssessesssesssessssssessssssssessssnsns
10.3.2. 1OETTOT HANAIIIG c..oureusieeseeenreeseeesseesseersessseesssessseesssssssess s sssessssessse s sssass s s ss s bbb 151
B OT0C 3 €1 § - 151
10.3.3.1Semantic mapping for XML elements (XE).....ccemeeseessssesssessssssssesssssssssssessssssssssssssssssssesees 151
10.3.3.2Semantic mapping for XML vValues (XV) .. sses 152

Decision Model and Notation 1.3 9

10.3.3.3 XML EXAMIPIE....cuceieereereerreesseeseerseessessseseessesssesssessesss s eessessse s sse R R R RS REE SRR SRR AR R e 152

110.3.3.3. 1S CHOIMA . cuteeeeeuieaeeeese et esseessee s esse bbb s R bR R £ R R AR AR 152

B0 T TG 1974 4 1] - (o] 153
10.3.3.3.3equivalent FEEL DOXEA CONTEXL....oiuierieeesseessesseesseessessessesssesssessssssssssessssssssssessasssssssssssssssssssssssssessssssnes 153

10.3.4 BUIIE-TN FUNCHIOMNS ...ttt ettt se et ses e esss e s bbb s bbb s 153
10.3.4.1CONVETSION fUNCHIOMNS. covvurieeseeeserseesssessseersesssessseesssesssessse st sssess s s ssse s ss s b s bbb s R 154
10.3.4.2B00LEAN FUNCHIOT. . .cuureeeueeueeeeerseesseesssesseeessess s ssseesssesss s s st s s bR R R bR 155
10.3.4.35tTINE FUNCHIONS cooviverercer s b s b b ssess b a b ssRS bR SRS sEebab R s s 156
OISR 3 7 3 o 13 o o o) U PO 157
10.3.4.5NUMETIC fUNCHIONS. c..tvureeetreesreessessessssisesssssss s sessses s s ssss bbb s bbb e b 159
10.3.4.6Date and tiMe fUNCHIOMNS. ..cc.ueereueesseerseesseesssesssessssssssessssesssessssess s sssess s s s s es e s b s bbb bbb 160
10.3.4.7RANEE FUNCHIONS ..ttt s bbb 160
10.3.4.8Temporal DUILE-IN fUNCHONS. ...t ss s sess e ss s s b 168
T10.3.4.9 SO Tttt s s b bR AR AR AR AR R R AR ARt n e 169
10.3.4.10CONEEXE FUNCHIOMN . c.uucuieeieeeeseesseesses st s s s s s ss bbb bbb 169
10.4 Execution Semantics of DeciSion ServiCes........ummssssssssssssssssssssns 170
10.5MetamMOAEL......ciiiiiiiisisssi i —————————————————————————— 171
10.5.1CONEEXE METAMOAEL....cuieieereereereere e sees bbb R bR s 171
10.5.2ConteXtENtry MetamOdEL. .. ssssssssssssssssssssssssssessssans 172
10.5.3FunctionDefinition MetamOdel.......ceerinneeitsrs s sssasses 172
10.5.4LISt METAIMIOAEL ... eieerieeeeretreerete et sees et seese st eesess e s e s b s s E bRt R et 173
10.5.5Relation MELAMOGEL........c ettt s e s s s 173
10.6 EXAIMPIES...iiiiiiniisissisnssisssisssasss sasssssssess sas s sassssssassssas ssassassssas sssnsassnsassnsnssnsens 174
IO S0 010 L /=) < PP 174
110.6. 2 CalCUIATION . coeuveueereeneeereeeeuse i eesseeeess et seesse e b et esse bbb R RS nEseER AR R s R 175
L0.6. 318, Ittt es s s s s s s RS ER R R AR AR R AR R 175
10.6.4SUM ENEIIES Of A LISTueuieuieereerecreeirsereesreseese et as s s ps s 175
10.6.5Invocation of user-defined PMT fUNCHON......crnerrenereisiseseessisee e isesssesssssssssssssesssssssesssns 175
10.6.65um weights of recent Credit RISTOTY ...t ess s sessssssnans 175
10.6.7Determine if credit history contain a bankruptcy eVent........eoneneessensenseenessessesessessseseens 176
TIDMN EXQMPIES..ciiiiiiirisimsmsmsssssssesssssssssssssss s ssss s s s ss s s sssas s sas s s sas s 178
11.1Example 1: Originations......cimimssssssssssssssssssssssssss s s sssssssssssssssssessssssssssses 178
30 0 00 0 U T L o) o PP 178
11.1.2 The bUSINESS ProCESS MOUEL. ... reeemeemreesreesreesseereeseesssesssessesssesssesssesssessseessessssesss s sssssssssssssssssssssssssssees 178

Decision Model and Notation 1.3 10

11.1.3The decision reqUIremMeNts LEVEL......o ettt rasss st 179

11.1.3.1Decision Requirements DIagIramS. ... sssssssssessssssssssss s 180
11.1.3.2DRG ELEINENLES. .. cuieuieureeeeseessesseessesssesseessesssessessssssesssessssssesssessesssesssessesssssssessesssesssssssessssssesseessasssesseessassssssesssssssssssssssens 184

B 0 00 1 1Tt] () 3PP 184
11.1.3.2.2KN0OWIEAZE SOUICES.....coeemereemreeeerseesrereesseessesssessesssesssessesssesssessesssesssessesssssssssesssssssessesssssssessesssesssessesssssssensssssn 186
T1.1.3.2.3INPUL DA uiiiirerreeeuerrerseeseessssssssssssesseasessessesses s s s sses st s b st s bbb 187
11.1.3.2.4Business KNOWIedge MOAEIS........couueieeerneeineesseeessessesssssssesssssssessssessss s sssessssssssessssssssesssssssessssesssees 187
11.1.3.3BUSINESS COMLEXE. uuiuuiiieueureuissessesssessss e ssessessessesses s s s es bbb bbb 188
11.1.3.4DECISION SEIVICES. civuueuueessremsesseeseessesseessesssesssessesssesssessesssesssessesssesssessesssesssessesssesssesssessesssesseessesssesseessesssessesssesssessssessenssns 190
11.1.4The deciSion LOZIC IEVEL. ... ettt ss s s s s s s 191
11.1.5Executing the DeciSion MOlereereeneeeeseesessseesseessessseesssesssssssssssesssssssesssssssesssesssessssssssssssessssens 204
11.2Example 2: Ranked LOan Products......cciimmssmsisssans 206
12EXChange fOrmats.....ccuumimsmmmmsmsssssmssssssssssssssssssssssssssssssnsssassnssssssnssssssnnnsss 229
12.1Interchanging Incomplete MOdelS..........courinmnmnmmmsmsmssmsminssinssnsssssssssssssssss s ssssssssssssssssans 229
12.2Machine Readable Files.........ccoummmmssssssssssssssssssssssssssssssssssn 229
B2 € D 229
12.3. 1D OCUMENT SEIUCTUT...eovvreereereerersessssessassens 229
12.3.2References within the DIMIN XSD......oineneeneneisssesssesssssesssssssssssssssssssessssssessssssssssssssstassssssssesass 229
13DMN Diagram Interchange (DMN DI)......ccccuiimmimmmmmsmmsss 231
K 201 0] o 231
13.2Diagram Definition and Interchange..........ccu s —————— 231
13.3How t0 read this ChaPLer ... s a s 231
13.4DMN Diagram Interchange Meta-Model.........cuiminnimnimsmssssssssssssssssssssses 231
S TR 0] o7 U 231
13.4.2MeaSUIEIMENT UNt....ciceicrieeseeserseesessesessesssssessssssssesssssssssssessssssssessssssssssssssssssssessesssssesssssessesssssessessssssssssnsssssasseens 232
13.4.3DMNDI [CLASS]ueurerreeneereerresrersesseeseessesssessessssssessssssessasssessssssessssssessessssssesssssseassssessssssessesssessssusessssssessessssssssassssssns 232
13.4.4ADMNDIAGIAIM [CLASS].ctiuurerrerrerereesseeseessessesssessesssessssssessesssessssssesssesesssessssssesssssessssssessesssessssssessssassssessssssssassasass 233
13.4.5DMNDiagramEIEmMeENt [Class]...ccereerrerneeseesseessssesessssssssssesssssssesssssssssssssssssssssssssssssssssssasssassssssssssssssces 235
13.4.6DMNSRAPE [ClASS].rrurerermermerseesseesseesseesssesseesssesssesssesssesssesssesssessssesssssssesssesssesssssssesssasssesssesssssssssssesssesssssssssssses 236
13.4.7DMNEAZE [CLASS].cuuiuurrerieurerreeserseeeesseesessesssessessesssessssssessesssessssssessssssessessssssssasssssssstssessssssessssssssssssssassssnsssssessens 237
13.4.BDMNLADEL [ClASS]uutuueeuseereeueereenressernsessesssessesssessesssessssssessessasssessssssessssssessasssessesssessssasesssssssssessssssssssssesssssesssssssens 238
13.4.9DMNSLYIE [CIASS]ieurirrrerrerreesesssesresssassesssssessssssssssssesssasssssssssssssssssssssnsssssssnsns 239
13.5Notational Depiction Library and Abstract Element Resolutions.........cccuimnmmensmsnsnnanas 241
G TR T80 1 7 1o 1= TP P OSSPSR 242

Decision Model and Notation 1.3 11

13.5.2DMNSRAPE RESOIULION.cureieureereeriteieceseesetse s essssssssses e bbb s bbb 242

S TR T0 00 B D 1< 3 (o) o VPP 242
13.5.2.2Business KNOWIEdZE MOAEL........ocuereeneerreemnernerseessersseseesseessessssssssssessessssssssssssssssssssssssssssssssssssassssssssssessssssssssssesss 243
13.5.2.3INPUL DALA EIEIMEINT....cuctieereeeetrecesesssseesssssssssessesssssssssssssssssssssssnsssnssssssssssnssssessnsas 243
13.5.2.4KN0WIEAZE SOUICE.....cuieeeeenreeeeseesreseesseessesseesseessessesseesse s ess s s ess s s s s s s E s AR R E e 243
BRI N w3 Lot 3P 244
13.5.2.6DECISION SEIVICE. ... ccrureerureeesseerseeeresssssesssseesssesssseeesssesesssesssseessssesssseessssesesssesessesssssesssssesessesesssessssessssesssasessaessessessees 244
13.5.3DMNEAZE RESOIULION.....oieieerreeeerseisseesseesseesseessessssessessssssss s ssse s ssss s bbb s st st

13.5.3.1Information Requirement

13.5.3.2KN0WIEdZE REQUITEIMENT. ...cvucrusiesseeseesersessseessesssessssesssesssssss s sessssssssss s s ss b s s s s s s 246
13.5.3.3AULNOTILY REQUITEIMENTceueeieerieeeeeesretsees e s seessessse s esss s s es s s s ssse bbb s s bbb st s 246
BT J N30 T =Y (o) o PP 246

Decision Model and Notation 1.3 12

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

https://'www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Issues

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
on the main web page http://www.omg.org, under Documents, Report a Bug/Issue.

Decision Model and Notation 1.3 13

http://www.iso.org/
https://www.omg.org/spec
https://www.omg.org/spec
https://www.omg.org/spec

1 Scope

The primary goal of DMN is to provide a common notation that is readily understandable by all business users, from the
business analysts needing to create initial decision requirements and then more detailed decision models, to the technical
developers responsible for automating the decisions in processes, and finally, to the business people who will manage and
monitor those decisions. DMN creates a standardized bridge for the gap between the business decision design and
decision implementation. DMN notation is designed to be usable alongside the standard BPMN business process
notation.

Another goal is to ensure that decision models are interchangeable across organizations via an XML representation.

The authors have brought forth expertise and experience from the existing decision modeling community and have sought
to consolidate the common ideas from these divergent notations into a single standard notation.

Decision Model and Notation 1.3 14

Decision Model and Notation 1.3

This page intentionally left blank.

15

2 Conformance

2.1 Conformance levels

Software may claim compliance or conformance with DMN E d only if the software fully matches the
applicable compliance points as stated in the specification. Softwarelee~eloped only partially matching the applicable
compliance points may claim that the software was based on this specification, but may not claim compliance or
conformance with this specification.

The specification defines three levels of conformance, namely Conformance Level 1, Conformance Level 2 and
Conformance Level 3.

An implementation claiming conformance to Conformance Level 1 is not required to support Conformance Level 2 or
Conformance Level 3. An implementation claiming conformance to Conformance Level 2 is not required to support
Conformance Level 3.

An implementation claiming conformance to Conformance Level 1 SHALL comply with all of the specifications set
forth in clauses 6 (Decision Requirements), 7 (Decision Logic) and 8 (Decision Table) of this document. An
implementation claiming conformance to Conformance Level 1 is never required to interpret expressions (modeled as an
Expression elements) in decision models. However, to the extent that an implementation claiming conformance to
Conformance Level 1 provides an interpretation to an expression, that interpretation SHALL be consistent with the
semantics of expressions as specified in clause 7.

An implementation claiming conformance to Conformance Level 2 SHALL comply with all of the specifications set
forth in clauses 6 (Decision Requirements), 7 (Decision Logic) and 8 (Decision Table) of this document. In addition it is
required to interpret expressions in the simple expression language (S-FEEL) specified in clause 9.

An implementation claiming conformance to Conformance Level 3 SHALL comply with all of the specifications set
forth in clauses 6 (Decision Requirements), 7 (Decision Logic), 8 (Decision Table) and 10 (Expression language) of this
document. Notice that the simple expression language that is specified in clause 9 is a subset of FEEL, and that,
therefore, an implementation claiming conformance to Conformance Level 3 can also claim conformance to Conformance
Level 2 (and to Conformance Level 1).

In addition, an implementation claiming conformance to any of the three DMN Eformance levels SHALL
comply with all of the requirements set forth in Clause 2.2.

2.2 General conformance requirement

2.2.1 Visual appearance

A key element of DMN is the choice of shapes and icons used for the graphical elements identified in this specification.
The intent is to create a standard visual language that all decision modelers will recognize and understand. An
implementation that creates and displays decision model diagrams SHALL use the graphical elements, shapes, and
markers illustrated in this specification.

There is flexibility in the size, color, line style, and text positions of the defined graphical elements, except where
otherwise specified.

The following extensions to a DMN Diagram are permitted:

e New markers or indicators MAY be added to the specified graphical elements. These markers or indicators could
be used to highlight a specific attribute of a DMN element or to represent a new subtype of the corresponding
concept.

e A new shape representing a new kind of artifact MAY be added to a Diagram, but the new shape SHALL NOT
conflict with the shape specified for any other DMN element or marker.

Decision Model and Notation 1.3 16

Alan Fish, 10/23/19
Editorial

Alan Fish, 10/23/19
Editorial

e Graphical elements MAY be colored, and the coloring may have specified semantics that extend the information
conveyed by the element as specified in this standard.

e The line style of a graphical element MAY be changed, but that change SHALL NOT conflict with any other
line style required by this specification.

An extension SHALL NOT change the specified shape of a defined graphical element or marker (e.g., changing a dashed
line into a plain line, changing a square into a triangle, or changing rounded corners into squared corners).

2.2.2 Decision semantics

This specification defines many semantic concepts used in defining decisions and associates them with graphical
elements, markers, and connections.

To the extent that an implementation provides an interpretation of some DMN diagram element as a semantic
specification of the associated concept, the interpretation SHALL be consistent with the semantic interpretation herein
specified.

2.2.3 Attributes and model associations

This specification defines a number of attributes and properties of the semantic elements represented by the graphical
elements, markers, and connections. Some attributes are specified as mandatory, but have no representation or only
optional representation. And some attributes are specified as optional.

For every attribute or property that is specified as mandatory, a conforming implementation SHALL provide some
mechanism by which values of that attribute or property can be created and displayed. This mechanism SHALL permit
the user to create or view these values for each DMN element specified to have that attribute or property.

Where a graphical representation for that attribute or property is specified as required, that graphical representation
SHALL be used. Where a graphical representation for that attribute or property is specified as optional, the
implementation MAY use either a graphical representation or some other mechanism.

If a graphical representation is used, it SHALL be the representation specified. Where no graphical representation for that
attribute or property is specified, the implementation MAY use either a graphical representation or some other
mechanism. If a graphical representation is used, it SHALL NOT conflict with the specified graphical representation of
any other DMN element.

Decision Model and Notation 1.3 17

3 References

3.1 Normative
BMM

e Business Motivation Model (BMM),Version 1.2, OMG Document number: formal/2014-05-01, May 2014
https://www.omg.org/spec/BMM/1.2

BPMN 2.0

e Business Process Model and Notation, version 2.0, OMG Document Number: formal/2011-01-03, January 2011
https://www.omg.org/spec/BPMN/2.0

CQL

* Clinical Quality Language, V1.4, HL7

https://cql.hl7.0rg/09-b-cqlreference.html#interval-operators-3| =
IEEE 754

e [EEE 754-2008, IEEE Standard for Floating-Point Arithmetic, International Electrical and Electronics
Engineering Society, December, 2008
http://www.techstreet.com/ieee/searches/5835853

ISO 8601

o ISO 8601:2004, Data elements and interchange formats -- Information interchange -- Representation of dates
and times, International Organization for Standardization, 2004
http://www.iso.org/iso/home/store/catalogue _tc/catalogue detail.htm?csnumber=40874

ISO EBNF

o ISO/IEC 14977:1996, Information technology -- Syntactic metalanguage -- Extended BNF, International
Organization for Standardization, 1996
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153 ISO IEC 14977 1996(E).zip

Java

o The Java Language Specification, Java SE 7 Edition, Oracle Corporation, February 2013
http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf

PMML

e Predictive Model Markup Language (PMML), Data Mining Group, May, 2014
http://www.dmg.org/v4-2-1/General Structure.html

RFC 3986

o RFC 3986: Uniform Resource Identifier (URI): Generic Syntax. Berners-Lee, T., Fielding, R., and Masinter, L,
editors. Internet Engineering Task Force, 2005. http://www.ietf.org/rfc/rfc3986.txt

Decision Model and Notation 1.3 18

Alan Fish, 10/10/19
DMN13-139

http://www.ietf.org/rfc/rfc3986.txt
http://www.dmg.org/v4-2-1/GeneralStructure.html
http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=40874
http://www.techstreet.com/ieee/searches/5835853
https://cql.hl7.org/09-b-cqlreference.html#interval-operators-3
https://www.omg.org/spec/BPMN/2.0
https://www.omg.org/spec/BPMN/2.0
https://www.omg.org/spec/BPMN/2.0
https://www.omg.org/spec/BMM/1.2
https://www.omg.org/spec/BMM/1.2
https://www.omg.org/spec/BMM/1.2

UML

o Unified Modeling Language (UML), v2.4.1, OMG Document Number formal/2011-08-05, August 2011
https://www.omg.org/spec/UML/2.4.1

XBASE
e XML Base (Second Edition). Jonathan Marsh and Richard Tobin, editors. World Wide Web Consortium, 2009.
http://www.w3.org/TR/xmlbase/
XML

o FExtensible Markup Language (XML) 1.0 (Fifth Edition), W3C Recommendation 26 November 2008
http://www.w3.org/TR/xml/

XML Schema

o XML Schema Part 2: Datatypes Second Edition, W3C Recommendation 28 October 2004
http://www.w3.org/TR/xmlschema-2/

XPath Data Model

e XQuery 1.0 and XPath 2.0 Data Model (XDM) (Second Edition), W3C Recommendation 14 December 2010
http://www.w3.org/TR/xpath-datamodel/

XQuery and XPath Functions and Operators

e XQuery 1.0 and XPath 2.0 Functions and Operators (Second Edition), W3C Recommendation 14
December 2010
http://www.w3.org/TR/xpath-functions/XQuery

3.2 Non-normative
JSON

o ECMA-404 The JSON Data Interchange Standard, European Computer Manufacturers Association, October,
2013
http://www.ecma-international.org/publications/files’ ECMA-ST/ECMA-404.pdf

PRR

e Production Rule Representation (PRR), Version 1.0, December 2009, OMG document number formal/2009-12-
01
https://www.omg.org/spec/PRR/1.0/

RIF

e RIF production rule dialect, Ch. de Sainte Marie et al. (Eds.) , W3C Recommendation, 22 June 2010.
http://www.w3.org/TR/rif-prd/

SBVR

Decision Model and Notation 1.3 19

http://www.w3.org/TR/rif-prd/
https://www.omg.org/spec/PRR/1.0/
https://www.omg.org/spec/PRR/1.0/
https://www.omg.org/spec/PRR/1.0/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.w3.org/TR/xpath-functions/XQuery
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/xmlbase/
https://www.omg.org/spec/UML/2.4.1
https://www.omg.org/spec/UML/2.4.1
https://www.omg.org/spec/UML/2.4.1

e Semantics of Business Vocabulary and Business Rules (SBVR), V1.2, OMG document number formal/2013-11-
04, November 2013
https://www.omg.org/spec/SBVR/1.2/

SQL

e ISO/IEC 9075-11:2011, Information technology -- Database languages -- SOL -- Part 11: Information and
Definition Schemas (SOL/Schemata), International Organization for Standardization, 2011
http://www.iso.org/iso/home/store/catalogue tc/catalogue detail.htm?csnumber=5368

XPath

e XML Path Language (XPath) Version 1.0, W3C Recommendation 16 November 1999
http://www.w3.org/TR/xpath

Decision Model and Notation 1.3 20

http://www.w3.org/TR/xpath
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=5368
https://www.omg.org/spec/SBVR/1.2/
https://www.omg.org/spec/SBVR/1.2/
https://www.omg.org/spec/SBVR/1.2/

Decision Model and Notation 1.3

This page intentionally left blank.

21

4 Additional Information

4.1 Acknowledgements
The following companies submitted version 1.0 of this specification:
e Decision Management Solutions
e Escape Velocity
e FICO
e International Business Machines
e Oracle
The following companies supported this specification:
e KU Leuven
e Knowledge Partners International
e Model Systems
e TIBCO

The following persons were members of the core team that contributed to the content specification: Martin Chapman, Bob
Daniel, Alan Fish, Larry Goldberg, John Hall, Barbara von Halle, Gary Hallmark, Dave Ings, Christian de Sainte Marie,
James Taylor, Jan Vanthienen, Paul Vincent. In addition, the following persons contributed valuable ideas and feedback
that improved the content and the quality of this specification: Bas Janssen, Robert Lario, Pete Rivett.

Version 1.1 was developed by the following persons and companies: Elie Abi-Lahoud, University College Cork; Justin
Brunt, TIBCO; Alan Fish, FICO; John Hall, Rule ML Initiative; Denis Gagne, Trisotech; Gary Hallmark, Oracle; Elisa
Kendall, Thematix Partners LLC; Manfred Koethe, 88solutions; Falko Menge, Camunda Services GmbH; Zbigniew
Misiak, BOC Information Technologies Consulting; Sjir Nijssen, PNA Group; Mihail Popov, MITRE; Pete Rivett,
Adaptive; Bruce Silver, Bruce Silver Associates; Bastian Steinert, Signavio GmbH; Tim Stephenson, Omny Link;
James Taylor, Decision Management Solutions; Jan Vanthienen, K.U. Leuven; Paul Vincent, Knowledge Partners, Inc.

Version 1.2 was developed by the following persons and companies: Alan Fish, FICO; Denis Gagne, Trisotech; Gary
Hallmark, Oracle; Elisa Kendall, Thematix Partners LLC; Manfred Koethe, 88solutions; Falko Menge, Camunda
Services GmbH; Zbigniew Misiak, BOC Products & Services AG; Sjir Nijssen, PNA Group; Octavian Patrascoiu,
Goldman Sachs; Bruce Silver, Bruce Silver Associates; Gil Ronen, Sapiens DECISION; Caroline Scharf, Tom Sawyer
Software; Bastian Steinert, Signavio GmbH; James Taylor, Decision Management Solutions; Edson Tirelli, Red Hat;
Jan Vanthienen, K.U. Leuven; Stephen White, Department of Veterans Affairs.

Version 1.3 was developed by the following persons and companies: Alan Fish, FICO:; Denis Gagne, Trisotech; Gary
Hallmark, Oracle; Uwe Kaufmann, GfSE e.V.: Elisa Kendall, Thematix Partners L.I.C; Manfred Koethe, 88solutions;
Robert Lario, Department of Veterans Affairs;: Falko Menge, Camunda Services GmbH; Zbigniew Misiak, BOC Products
& Services AG: Matteo Mortari, Red Hat; Sjir Nijssen, PNA Group: Octavian Patrascoiu, Goldman Sachs; Bruce Silver
Bruce Silver Associates; Gil Segal, Sapiens Decision NA: Bastian Steinert, Signavio GmbH: James Taylor, Decision
Management Solutions; Edson Tirelli, Red Hat: Jan Vanthienen, K.U. L.euven; Stephen White. Department of Veterans
Affairs.

4.2 IPR and Patents

The submitters contributed this work to OMG on a RF on RAND basis.

Decision Model and Notation 1.3 22

Alan Fish, 10/23/19
DMN13-195

4.3 Guide to the Specification
Clause 1 summarizes the goals of the specification.

Clause 2 defines three levels of conformance with the specification: Conformance Level 1, Conformance Level 2 and
Conformance Level 3.

Clause 3 lists normative references.
Clause 4 provides additional information useful in understanding the background to and structure of the specification.

Clause 5 discusses the scope and uses of DMN and introduces the principal concepts, including the two levels of DMN:
the decision requirements level and the decision logic level.

Clause 6 defines the decision requirements level of DMN: the Decision Requirements Graph (DRG) and its notation as a
Decision Requirements Diagram (DRD).

Clause 7 introduces the principles by which decision logic may be associated with elements in a DRG: i.e. how the
decision requirements level and decision logic level are related to each other.

Clauses 8, 9 and 10 then define the decision logic level of DMN:
e Clause 8 defines the notation and syntax of Decision Tables in DMN
e Clause 9 defines S-FEEL: a subset of FEEL to support decision tables

e Clause 10 defines the full syntax and semantics of FEEL: the default expression language used for the Decision
Logic level of DMN.

Clause 11 provides-a# examples of DMN used to model human and automated decision-making

Clause 12 addresses exchange formats and provides references to machine-readable files (XSD and XMI).
The Annexes provide non-normative background information:
e Annex A. discusses the relationship between DMN and BPMN

e Annex B. provides a glossary of terms.

Decision Model and Notation 1.3 23

Alan Fish, 10/09/19
Editorial for DMN13-2

Decision Model and Notation 1.3

24

5 Introduction to DMN
5.1 Context

The purpose of DMN is to provide the constructs that are needed to model decisions, so that organizational decision-
making can be readily depicted in diagrams, accurately defined by business analysts, and (optionally) automated.

Decision-making is addressed from two different perspectives by existing modeling standards:

e Business process models (e.g., BPMN) can describe the coordination of decision-making within business
processes by defining specific tasks or activities within which the decision-making takes place.

e Decision logic (e.g., PRR, PMML) can define the specific logic used to make individual decisions, for example
as business rules, decision tables, or executable analytic models.

However, a number of authors (including members of the submission team) have observed that decision-making has an
internal structure which is not conveniently captured in either of these modeling perspectives. Our intention is that DMN
will provide a third perspective — the Decision Requirements Diagram — forming a bridge between business process
models and decision logic models:

e Business process models will define tasks within business processes where decision-making is required to occur.

e Decision Requirements Diagrams will define the decisions to be made in those tasks, their interrelationships, and
their requirements for decision logic.

e Decision logic will define the required decisions in sufficient detail to allow validation and/or automation.

Taken together, Decision Requirements Diagrams and decision logic can provide a complete decision model which
complements a business process model by specifying in detail the decision-making carried out in process tasks. The
relationships between these three aspects of modeling are shown in Figure 5.1.

Decision Model and Notation 1.3 25

Collect
application data .
Decision Model
| —
(DMN)
L 4 e ' e
I < -
Degde B . Routing - —Z—[/ Routing table /J
routing 1 F
Routing = b4 Routing = Application risk
lcaton ri " . .
ACCEPT DECLINE sgure modsl } - Application risk E ligibility k= { Eligibility rules J
Decision Requirements
Level
Offer Dedine
product customer Application
Eligibility rules
. Eligibility
. Employment
Business Process Model . P S Country | Age |—mermmre
(BPMMN) 4 ELIGIBLE
1 1 | UNEMPLOYED - - INELIGIELE
2 - not{ UK} - INELIGIELE
3 - - =18 INELNGELE
4 - - - ELIGELE

Decision Logic
Level

Figure 5.1: Aspects of modeling

The resulting connected set of models will allow detailed modeling of the role of business rules and analytic models in
business processes, cross-validation of models, top-down process design and automation, and automatic execution of
decision-making (e.g., by a business process management system calling a decision service deployed from a business
rules management system).

Although Figure 5.1 shows a linkage between a business process model and a decision model for the purposes of
explaining the relationship between DMN and other standards, it must be stressed that DMN is not dependent on BPMN,
and its two levels — decision requirements and decision logic — may be used independently or in conjunction to model a
domain of decision-making without any reference to business processes (see 5.2).

DMN will provide constructs spanning both decision requirements and decision logic modeling. For decision
requirements modeling, it defines the concept of a Decision Requirements Graph (DRG) comprising a set of elements and
their connection rules, and a corresponding notation: the Decision Requirements Diagram (DRD). For decision logic
modeling it provides a language called FEEL for defining and assembling decision tables, calculations, if/then/else logic,
simple data structures, and externally defined logic from Java and PMML into executable expressions with formally
defined semantics. It also provides a notation for decision logic (“boxed expressions”) allowing components of the

Decision Model and Notation 1.3 26

decision logic level to be drawn graphically and associated with elements of a Decision Requirements Diagram. The
relationship between these constructs is shown in Figure 5.2.

Routing \

Application risk
score model

Application risk Eligibility K—— ~| Eligibility rules I
- ’

Application risk
category table

Decision Requirements

. Application
Diagram

......... ; Notation
y Y " [Etigibiity rutes
Eligibility E o | Employment | oo - Eligibility
Eligibility rules < status V| A9¢ IFNETIGIBLE,
- ELIGIBLE
Employment | Application.Applicant.Employment. ;3
status Status - 1 | UNEMPLOYED - - INELIGIBLE
Country Application.Applicant.Country] 2 _ not(UK) _ INELIGIBLE
years and months duration(a '
Age Application.Applicant.Date of birth, 4 R 3 - - <18 INELIGIBLE
Application.Date).years .
> 4 - - - ELIGIBLE
Boxed Expression - Boxed Expression - . :
(Invocation) : (Decision Table) ~— "-~-.. s
............... ~
. years and months duration(5 <18
) Application.Applicant.Date of Birth, . L v)
Application.Date).years s Expression
. ol Test for Age < 18 > Language
(FEEL)
Computation of Age
from two dates
_/

Figure 5.2: DMN Constructs

5.2 Scope and uses of DMN

Decision modeling is carried out by business analysts in order to understand and define the decisions used in a business or
organization. Such decisions are typically operational decisions made in day-to-day business processes, rather than the
strategic decision-making for which fewer rules and representations exist.

Decision Model and Notation 1.3 27

Three uses of DMN can be discerned in this context:
1. For modeling human decision-making.
2. For modeling the requirements for automated decision-making.

3. For implementing automated decision-making.

5.2.1 Modeling human decision-making

DMN may be used to model the decisions made by personnel within an organization. Human decision-making can be
broken down into a network of interdependent constituent decisions, and modeled using a DRD. The decisions in the
DRD would probably be described at quite a high level, using natural language rather than decision logic.

Knowledge sources may be defined to model governance of decision-making by people (e.g., a manager), regulatory
bodies (e.g. an ombudsman), documents (e.g., a policy booklet) or bodies of legislation (e.g., a government statute).
These knowledge sources may be linked together, for example to show that a decision is governed (a) by a set of
regulations defined by a regulatory body, and (b) by a company policy document maintained by a manager.

Business knowledge models may be used to represent specific areas of business knowledge drawn upon when making
decisions. This will allow DMN to be used as a tool for formal definition of requirements for knowledge management.
Business knowledge models may be linked together to show the interdependencies between areas of knowledge (in a
manner similar to that used in the existing technique of Knowledge Structure Mapping). Knowledge sources may be
linked to the business knowledge models to indicate how the business knowledge is governed or maintained, for example
to show that a set of business policies (the business knowledge model) is defined in a company policy document (the
knowledge source).

In some cases it may be possible to define specific rules or algorithms for the decision-making. These may be modeled
using decision logic (e.g., business rules or decision tables) to specify business knowledge models in the DRD, either
descriptively (to record how decisions are currently made, or how they were made during a particular period of
observation) or prescriptively (to define how decisions should be made, or will be made in the future).

Decision-making modeled in DMN may be mapped to tasks or activities within a business process modeled using BPMN.
At a high level, a collaborative decision-making task may be mapped to a subset of decisions in a DRD representing the
overall decision-making behavior of a group or department. At a more detailed level, it is possible to model the
interdependencies between decisions made by a number of individuals or groups using BPMN collaborations: each
participant in the decision-making is represented by a separate pool in the collaboration and a separate DRD in the
decision model. Decisions in those DRDs are then mapped to tasks in the pools, and input data in the DRDs are mapped
to the content of messages passing between the pools.

The combined use of BPMN and DMN thus provides a graphical language for describing multiple levels of human
decision-making within an organization, from activities in business processes down to a detailed definition of decision
logic. Within this context DMN models will describe collaborative organizational decisions, their governance, and the
business knowledge required for them.

5.2.2 Modeling requirements for automated decision-making

The use of DMN for modeling the requirements for automated decision-making is similar to its use in modeling human
decision-making, except that it is entirely prescriptive, rather than descriptive, and there is more emphasis on the detailed
decision logic.

For full automation of decisions, the decision logic must be complete, i.e., capable of providing a decision result for any
possible set of values of the input data.

However, partial automation is more common, where some decision-making remains the preserve of personnel.
Interactions between human and automated decision-making may be modeled using collaborations as above, with
separate pools for human and automated decision-makers, or more simply by allocating the decision-making to separate
tasks in the business process model, with user tasks for human decision-making and business rule tasks for automated
decision-making. So, for example, an automated business rules task might decide to refer some cases to a human

Decision Model and Notation 1.3 28

reviewer; the decision logic for the automated task needs to be specified in full but the reviewer’s decision-making could
be left unspecified.

Once decisions in a DRD are mapped to tasks in a BPMN business process flow, it is possible to validate across the two
levels of models. For example, it is possible to verify that all input data in the DRDs are provided by previous tasks in the
business process, and that the business process uses the results of decisions only in subsequent tasks or gateways. DMN
models the relationships between Decisions and Business Processes so that the Decisions that must be made for a
Business Process to complete can be identified and so that the specific decision-making tasks that perform or execute a
Decision can be specified. No formal mapping of DMN ItemDefinition or DMN InputData to BPMN
DataObject is proposed but an implementation could include such a check in a situation where such a mapping could
be determined.

Together, BPMN and DMN therefore allow specification of the requirements for automated decision-making and its
interaction with human decision making within business processes. These requirements may be specified at any level of
detail, or at all levels. The three-tier mapping between business process models, DRDs and decision logic will allow the
definition of these requirements to be supported by model-based computer-aided design tools.

5.2.3 Implementing automated decision-making

If all decisions and business knowledge models are fully specified using decision logic, it becomes possible to execute
decision models.

One possible scenario is the use of “decision services” deployed from a Business Rules Management System (BRMS)
and called by a Business Process Management System (BPMS). A decision service encapsulates the decision logic
supporting a DRD, providing interfaces that correspond to subsets of input data and decisions within the DRD. When
called with a set of input data, the decision service will evaluate the specified decisions and return their results. The
constraint in DMN that all decision logic is free of side-effects means that decision services will comply with SOA
principles, simplifying system design. Note that decision services may also be invoked internal to the decision model, a
trait that they share with business knowledge models.

The structure of a decision model, as visualized in the DRD, may be used as a basis for planning an implementation
project. Specific project tasks may be included to cover the definition of decision logic (e.g., rule discovery using human
experts, or creation of analytic models), and the implementation of components of the decision model.

Some decision logic representing the business knowledge encapsulated in decision services needs to be maintained over
time by personnel responsible for the decisions, using special “knowledge maintenance interfaces”. DMN supports the
effective design and implementation of knowledge maintenance interfaces: any business knowledge requiring
maintenance should be modeled as business knowledge models in the DRD, and the responsible personnel as knowledge
sources. DRDs then provide a specification of the required knowledge maintenance interfaces and their users, and the
decision logic specifies the initial configuration of the business knowledge to be maintained.

Other decision logic needs to be refreshed by regular analytic modeling. The representation of business knowledge
models as functions in DMN makes the use of analytic models in decision services very simple: any analytic model
capable of representation as a function may be directly called by or imported into a decision service.

5.2.4 Combining applications of modeling

The three contexts described above are not mutually exclusive alternatives; a large process automation project might use
DMN in all three ways.

First, the decision-making within the existing process might be modeled, to identify the full extent of current decision
making and the areas of business knowledge involved. This “as-is” analysis provides the baseline for process
improvement.

Next, the process might be redesigned to make the most effective use of both automated and human decision-making,
often using collaboration between the two (e.g. using automated referrals to human decision-makers, or decision support
systems which advise or constrain the user). Such a redesign involves modeling the requirements for the decision-making
to occur in each process task and the roles and responsibilities of individuals or groups in the organization. This model
provides a “to-be” specification of the required process and the decision-making it coordinates.

Decision Model and Notation 1.3 29

Comparison of the “as-is” and “to-be” models will indicate requirements not just for automation technology, but for
change management: changes in the roles and responsibilities of personnel, and training to support new or modified
business knowledge.

Finally, the “to-be” model will be implemented as executable system software. Provided the decision logic is fully
specified in FEEL and/or other external logic (e.g., externally defined Java methods or PMML models), components of
the decision model may be implemented directly as software components.

DMN does not prescribe any particular methodology for carrying out the above activities; it only supports the models
used for them.

5.3 Basic concepts

5.3.1 Decision requirements level

The word “decision” has two definitions in common use: it may denote the act of choosing among multiple possible
options; or it may denote the option that is chosen. In this specification, we adopt the former usage: a decision is the act
of determining an output value (the chosen option), from a number of input values, using logic defining how the output
is determined from the inputs. This decision logic may include one or more business knowledge models which
encapsulate business know-how in the form of business rules, analytic models, or other formalisms. This basic structure,
from which all decision models are built, is shown in Figure 5.3.

L Business
Decision -
knowledge

L

t Input data }

Figure 5.3: Basic elements of a decision model

For simplicity and generality, many of the figures in this specification show each decision as having a single associated
business knowledge model, but it should be noted that DMN does not require this to be the case. The use of business
knowledge models to encapsulate decision logic is a matter of style and methodology, and decisions may be modeled
with no associated business knowledge models, or with several. Similar to business knowledge models, decision services
may also be used to encapsulate decision logic for reuse inside the decision model, but for simplicity such examples will
be presented starting in the section describing decision services.

Authorities may be defined for decisions or business knowledge models, which might be (for example) domain experts
responsible for defining or maintaining them, or source documents from which business knowledge models are derived,
or sets of test cases with which the decisions must be consistent. These are called knowledge sources (see Figure 5.4).

Decision Model and Notation 1.3 30

Knowledge Knowledge

source 2

source 1

.. Business
Decision -—
knowledge

A

l Input data '

Figure 5.4: Knowledge sources

A decision is said to “require” its inputs in order to determine its output. The inputs may be input data, or the outputs of
other decisions. (In either case they may be data structures, rather than just simple data items.) If the inputs of a decision
Decisionl include the output of another decision Decision2, Decisionl “requires” Decision2. Decisions may therefore be
connected in a network called a Decision Requirements Graph (DRG), which may be drawn as a Decision
Requirements Diagram (DRD). A DRD shows how a set of decisions depend on each other, on input data, and on
business knowledge models. A simple example of a DRD with only two decisions is shown in Figure 5.5.

Decision 1 o= Business
knowledge 1

o Business
Input data 1 Decision 2 __‘(knowledge 2 J
: Input data 2)

Figure 5.5: A simple Decision Requirements Diagram (DRD)

A decision may require multiple business knowledge models, and a business knowledge model may require multiple
other business knowledge models, as shown in Figure 5.6. This will allow (for example) the modeling of complex
decision logic by combining diverse areas of business knowledge, and the provision of alternative versions of decision

logic for use in different situations.
Business
knowledge 1
Decision - Business
knowledge 2a
B Business -
knowledge 2 J
h Business
knowledge 2b

Figure 5.6: Combining business knowledge models

DRGs and their notation as DRDs are specified in detail in clause 6.

Decision Model and Notation 1.3 31

5.3.2 Decision logic level

The components of the decision requirements level of a decision model may be described, as they are above, using only
business concepts. This level of description is often sufficient for business analysis of a domain of decision-making, to
identify the business decisions involved, their interrelationships, the areas of business knowledge and data required by
them, and the sources of the business knowledge. Using decision logic, the same components may be specified in greater
detail, to capture a complete set of business rules and calculations, and (if desired) to allow the decision-making to be
fully automated.

Decision logic may also provide additional information about how to display elements in the decision model. For
example, the decision logic element for a decision table may specify whether to show the rules as rows or as columns.
The decision logic element for a calculation may specify whether to line up terms vertically or horizontally.

The correspondence between concepts at the decision requirements level and the decision logic level is described below.
Please note that in the figures below, as in Figure 5.1 and Figure 5.2 , the grey ellipses and dotted lines are drawn only to
indicate correspondences between concepts in different levels for the purposes of this introduction. They do not form part
of the notation of DMN, which is formally defined in clauses 6.2, 8.2, and 10.2. It is envisaged that implementations will

provide facilities for moving between levels of modeling, such as “opening”, “drilling down” or “zooming in”, but DMN
does not specify how this should be done.

At the decision logic level, every decision in a DRG is defined using a value expression which specifies how the
decision’s output is determined from its inputs. At that level, the decision is considered to be the evaluation of the
expression. The value expression may be notated using a boxed expression, as shown in Figure 5.7.

Decision 1 — Business
knowledge 1
Input data 1 Decision 2 - Business
" > knowledge 2

A

Decision 2

{ Inputdata2) L .
P ., Value expression

Figure 5.7: Decision and corresponding value expression

In the same way, at the decision logic level, a business knowledge model is defined using a value expression that specifies
how an output is determined from a set of inputs. In a business knowledge model, the value expression is encapsulated as
a function definition, which may be invoked from a decision's value expression. The interpretation of business
knowledge models as functions in DMN means that the combination of business knowledge models as in Figure 5.6 has
the clear semantics of functional composition. The value expression of a business knowledge model may be notated
using a boxed function definition, as shown in Figure 5.8. Similar to a business knowledge model, the decision service
element can also be invoked from a decision’s value expression (see clause 5.3.3).

Decision Model and Notation 1.3 32

Decision 1 A Business et settT T ..
knowledge 1 L il

Business knowledge 1

Parameters

/ ; 3
Input data 1 Decision 2 Business :
knowledge 2 1 Value expression

(Inputdata2)

Figure 5.8: Business knowledge model and corresponding value expression

A business knowledge model may contain any decision logic which is capable of being represented as a function. This
will allow the import of many existing decision logic modeling standards (e.g., for business rules and analytic models)
into DMN. An important format of business knowledge, specifically supported in DMN, is the Decision Table. Such a
business knowledge model may be notated using a Decision Table, as shown in Figure 5.9.

Degision 1 _ { kn?::.l-iglgs; 1 J
: Business knowledge 2

/ \ U Input 1 Input 2 Output

. Business ;I
(Input data 1) Decision 2 ——{ knowledge 2 J N : 1 Input entry 2a Output entry 1
7y el Input entry 1a

2 Input entry 2b || Output entry 2

i Input data 2) 3 | Input entry 1b | Input entry 2c Output entry 3

Figure 5.9: Business knowledge model and corresponding decision table

In most cases, the logic of a decision is encapsulated into business knowledge models, and the value expression
associated with the decision specifies how the business knowledge models are invoked, and how the results of their
invocations are combined to compute the output of the decision. The decision’s value expression may also specify how
the output is determined from its input entirely within itself, without invoking a business knowledge model: in that case,
no business knowledge model is associated with the decision (neither at the decision requirements level nor at the
decision logic level).

An expression language for defining decision logic in DMN, covering all the above concepts, is specified fully in clause
10. This is FEEL: the Friendly Enough Expression Language. The notation for Decision Tables is specified in detail in
clause 8.

5.3.3 Decision services

A decision service defines reusable logic within the decision model. A decision service exposes one or more decisions
from a decision model as a reusable element, a service, which might be consumed (for example) internally by another

Decision Model and Notation 1.3 33

decision in the decision model, or externally by a task in a BPMN process model. When the service is called with the
necessary input data and decision results, it returns the outputs of the exposed decisions. Any decision service
encapsulating a DMN decision model will be stateless and have no side effects.

One important use of DMN will be to define decision-making logic to be automated using decision services. When the
decision service is invoked externally, it might be implemented, for example, as a web service. DMN does not specify
how such services should be implemented, but it allows the functionality of a service to be defined against a decision
model. The decision service therefore must be defined in a DRD. When invoked internally from a decision the decision
service is invoked, similar to a BKM, by binding expressions in the logic of the calling decision to parameters in the
invoked decision service.

It is assumed that the client requires a certain set of decisions to be made, and that the service is created to meet that
requirement. The sole function of the decision service is to return the results of evaluating that set of decisions (the
“output decisions”). The service may be provided with the results of decisions evaluated externally to the service (the
“input decisions”). The service must encapsulate not just the output decisions but also any decisions in the DRG directly
or indirectly required by the output decisions which are not provided in the input decisions (the “encapsulated decisions”).

The interface to the decision service will consist of:
e Input data: instances of all the input data required by the encapsulated decisions.
e Input decisions: instances of the results of all the input decisions.

e Output decisions: the results of evaluating (at least) all the output decisions, using the provided input decisions
and input data.

When the service is called, providing the input data and input decisions, it returns the output decisions.

Note that to define a decision service it is only necessary to specify the output decisions and either the input decisions or
the encapsulated decisions. The remaining attributes (the required input data, and whichever of the encapsulated or input
decisions was not specified) may then be inferred from the decision model against which the service is defined.
Alternatively, if more attributes are defined than are strictly necessary, they may be validated against the decision model.

Figure 5.10 shows a decision service defined against a decision model that includes three decisions. The output decisions
for this service are {Decision 1}, and the input decisions are {}, that is, the service returns the result of Decision 1 and is
not provided with the results of any external decisions. Since Decision 1 requires Decision 2, which is not provided to the
service as input, the service must also encapsulate Decision 2. Decision 3 is not required to be encapsulated. The
encapsulated decisions are therefore {Decision 1, Decision 2}. The service requires Input data 1 and Input data 2, but not
Input data 3.

/

Decision Service 1

Decision 1 Decision 3

A A

Decision 2

\ L /
‘ Input data1) | Inputdata2 , (Inputdata3d)

Figure 5.10: A decision service

Decision Model and Notation 1.3 34

Multiple decision services may be defined against the same decision model. Figure 5.11 shows a decision service defined
against the same decision model, whose output decisions are {Decision 1} and whose input decisions are {Decision 2}.
The encapsulated decisions for this service are {Decision 1}. The service requires Input data 1, but not Input data 2 or
Input data 3.

Decision Service 1

Decision 1 Decision 3

A

‘ Input data 1] Decision 2

'Y

| Inputdata2 , (Input data 3 :|

Figure 5.11: A decision service taking a decision as input

A

In its simplest form a decision service would always evaluate all the decisions in the output set set and return all their
results.

For computational efficiency various improvements to this basic interpretation can be imagined, e.g.

e An optional input parameter specifying a list of “requested decisions” (a subset of the minimal output set). Only
the results of the requested decisions would be returned in the output context.

e An optional input parameter specifying a list of “known decisions” (a subset of the encapsulation set), with their
results. The decision service would not evaluate these decisions, but would use the provided input values
directly.

All such implementation details are left to the software provider.

A decision service is “complete” if it contains decision logic for evaluating all the encapsulated decisions on all possible
input data values. A request to the service is “valid” if instances are provided for all the input decisions and input data
required by those decisions which need to be evaluated, i.e., (in the simple case) all the encapsulated decisions, or
(assuming the optional parameters above) any requested decisions and their required sub-decisions which are not already
known.

Decision Model and Notation 1.3 35

Decision Model and Notation 1.3

This page intentionally left blank.

36

6 Requirements (DRG and DRD)

6.1 Introduction

The decision requirements level of a decision model in DMN consists of a Decision Requirements Graph (DRG) depicted
in one or more Decision Requirements Diagrams (DRDs).

A DRG models a domain of decision-making, showing the most important elements involved in it and the dependencies
between them. The elements modeled are decisions, areas of business knowledge, sources of business knowledge, input
data and decision services:

e A Decision element denotes the act of determining an output from a number of inputs, using decision logic
which may reference one or more Business Knowledge Models.

e A Business Knowledge Model element denotes a function encapsulating business knowledge, e.g., as business
rules, a decision table, or an analytic model.

e An Input Data element denotes information used as an input by one or more Decisions.

e A Knowledge Source element denotes an authority for a Business Knowledge Model or Decision.

e A Decision Service element denotes a set of reusable decisions that can be invoked internally or externally.
The dependencies between these elements express three kinds of requirements: information, knowledge and authority:

¢ An Information Requirement denotes Input Data or Decision output being used as input to a Decision.

e A Knowledge Requirement denotes the invocation of a Business Knowledge Model or Decision Service by the
decision logic of a Decision.

e An Authority Requirement denotes the dependence of a DRG element on another DRG element that acts as a
source of guidance or knowledge.

DRDs may also contain any number of artifacts representing annotations of the diagram:
e A Text Annotation is modeler-entered text used for comment or explanation.
e An Association is a dotted connector used to link a Text Annotation to a DRG Element
o

These components are summarized in Table 1 and described in more detail in clause 6.2.

A DRG is a graph composed of elements connected by requirements, and is self-contained in the sense that all the
modeled requirements for any Decision in the DRG (its immediate sources of information, knowledge and authority) are
present in the same DRG. It is important to distinguish this complete definition of the DRG from a DRD presenting any
particular view of it, which may be a partial or filtered display: see clause 6.2.4.

6.2 Notation

The notation for all components of a DRD is summarized in Table 1 and described in more detail below.

Decision Model and Notation 1.3 37

Alan Fish, 06/25/19
DMN13-6

Table 1: DRD components

Component Description Notation
Elements Decision A decision denotes the act of determining an output
from a number of inputs, using decision logic which Decision
may reference one or more business knowledge
models.
Business A business knowledge model denotes a function
Knowledge encapsulating business knowledge, e.g., as Business
Model business rules, a decision table, or an analytic knowledge
model.
Input Data An input data element denotes information used as
an input by one or more decisions. When enclosed Input data
within a knowledge model, it denotes the
parameters to the knowledge model.
Knowledge A knowledge source denotes an authority for a Knowledge
Source business knowledge model or decision. sOUrce
Decision A decision service may enclose a set of reusable (e .]
. . . . Decision service
Service decisions (not shown in the element to the right)
(expanded) that can be invoked internally by another decision or k)
externally, e.g., by a BPMN process.
Decision A decision service denotes a set of reusable Collapsed
Service decisions (that may be hidden using the element to decision service
(collapsed) the right).
Requirements Information An information requirement denotes input data or a
Requirement decision output being used as one of the inputs of a -
decision.
Knowledge A knowledge requirement denotes the invocationof | 4
Requirement a business knowledge model.
Authority An authority requirement denotes the dependence
————————— -

Requirement

of a DRD element on another DRD element that
acts as a source of guidance or knowledge.

Artifacts Text Annotation

A Text Annotation consists of a square bracket
followed by modeler-entered explanatory text or
comment.

Text annotation

Association

An Association connector links a Text Annotation to
the DRG Element it explains or comments on.

Decision Model and Notation 1.3

38

Alan Fish, 06/25/19
DMN13-6

6.2.1 DRD Elements

6.2.1.1 Decision notation

A Decision is represented in a DRD as a rectangle, normally drawn with solid lines, as shown in Table 1. The Name of
the Decision MUST be displayed inside the shape unless it is overridden by the text attribute of the associated
DMNDI:DMNLabel element, which MUST be displayed instead.

If the Listed Input Data option is exercised (see 6.2.1.3), all the Decision’s requirements for Input Data SHALL be listed
beneath the Decision’s Name and separated from it by a horizontal line, as shown in Figure 6.1. The listed Input Data
names SHALL be clearly inside the shape of the DRD element.

Decision

Input data 1
Input data 2

Figure 6.1: Decision with Listed Input Data option

The properties of a Decision are listed and described in 6.3.6.

6.2.1.2 Business Knowledge Model notation

A Business Knowledge Model is represented in a DRD as a rectangle with two clipped corners, normally drawn with
solid lines, as shown in Table 1. The Name of the Business Knowledge Model MUST be displayed inside the shape
unless it is overridden by the text attribute of the associated DMNDI:DMNLabel element, which MUST be displayed
instead.

The properties of a Business Knowledge Model are listed and described in 6.3.8.

6.2.1.3 Input Data notation

An Input Data element is represented in a DRD as a shape with two parallel straight sides and two semi-circular ends,
normally drawn with solid lines, as shown in Table 1. The Name of the Input Data element MUST be displayed inside
the shape unless it is overridden by the text attribute of the associated DMNDI:DMNLabel element, which MUST be
displayed instead.

An alternative compliant way to display requirements for Input Data, especially useful when DRDs are large or complex,
is that Input Data are not drawn as separate notational elements in the DRD, but are instead listed on those Decision
elements which require them. For convenience in this specification this is called the “Listed Input Data” option.
Implementations MAY offer this option. Figure 6.2 shows two equivalent DRDs, one drawing Input Data elements, the
other exercising the Listed Input Data option. Note that if an Input Data element is not displayed it SHALL be listed on
all Decisions which require it (unless it is deliberately hidden as discussed in 6.2.4).

Decision Model and Notation 1.3 39

Decision 1

Decision 1
Input data 1
Input data 1 Decision 2
1 ! Decision 2
() 1 Input data 1
Input data 2 Input data 2
Input Data drawn as Input Data listed on

elements ol e Decisions

Figure 6.2: The Listed Input Data option

The properties of an Input Data element are listed and described in 6.3.11.

6.2.1.4 Knowledge Source notation

A Knowledge Source is represented in a DRD as a shape with three straight sides and one wavy one, normally drawn with
solid lines, as shown in Table 1. The Name of the Knowledge Source MUST be displayed inside the shape unless it is
overridden by the text attribute of the associated DMNDI:DMNLabel element, which MUST be displayed instead.

The properties of a Knowledge Source element are listed and described in 6.3.12.

6.2.2 DRD Requirements

6.2.2.1 Information Requirement notation

Information Requirements may be drawn from Input Data elements to Decisions, and from Decisions to other Decisions.
They represent the dependency of a Decision on information from input data or the results of other Decisions. They may
also be interpreted as data flow: a DRD displaying only Decisions, Input Data and Information Requirements is
equivalent to a dataflow diagram showing the communication of information between those elements at evaluation time.
The Information Requirements of a valid DRG form a directed acyclic graph.

An Information Requirement is represented in a DRD as an arrow drawn with a solid line and a solid arrowhead, as
shown in Table 1. The arrow is drawn in the direction of information flow, i.e., towards the Decision that requires the
information.

6.2.2.2 Knowledge Requirement notation

Knowledge Requirements may be drawn from invocable elements (Business Knowledge Models or Decision Services) to
Decisions and from invocable elements to Business Knowledge Models. They represent the invocation of an invocable
element when making a decision. If e is a decision or a BKM in some DRD, and e contains a knowledge requirement on
some invocable element b, then the logic of e must contain an invocation expression of b, including expressions for each
of b's parameters.

A Knowledge Requirement is represented in a DRD as an arrow drawn with a dashed line and an open arrowhead, as
shown in Table 1. The arrows are drawn in the direction of the information flow of the result of evaluating the function,
i.e. toward the element that requires the business knowledge.

Decision Model and Notation 1.3 40

6.2.2.3 Authority Requirement notation

Authority Requirements may be used in two ways:

a)

b)

They may be drawn from Knowledge Sources to Decisions, Business Knowledge Models and other Knowledge
Sources, where they represent the dependence of the DRD element on the knowledge source. This might be used
to record the fact that a set of business rules must be consistent with a published document (e.g., a piece of
legislation or a statement of business policy), or that a specific person or organizational group is responsible for
defining some decision logic, or that a decision is managed by a person or group. An example of this use of
Knowledge Sources is shown in Figure 6.3: in this case the Business Knowledge Model requires two sources of
authority — a policy document and legislation — and the policy document requires the authority of a policy group.

Palicy

FPoli
document olicy group

e Business
Decision -
knowledge -

Iy - | Legislation

l Input data)

Figure 6.3: Knowledge Sources representing authorities

They may be drawn from Input Data and Decisions to Knowledge Sources, where, in conjunction with use (a),
they represent the derivation of Business Knowledge Models from instances of Input Data and Decision results,
using analytics. The Knowledge Source typically represents the analytic model (or modeling process); the
Business Knowledge Model represents the executable logic generated from or dependent on the model. An
example of this use of a Knowledge Source is shown in Figure 6.4: in this case a business knowledge model is
based on an analytic model which is derived from input data and the results of a dependent decision.

Analylic model

£

£

Decision __ Business
knowledge

|
| &
|
|

Input data

Figure 6.4: Knowledge source representing predictive analytics

However, the figures above are only examples. There are many other possible use cases for Authority Requirements (and
since Knowledge Sources and Authority Requirements have no execution semantics their interpretation is necessarily
vague), so this specification leaves the details of their application to the implementer.

An Authority Requirement is represented in a DRD as an arrow drawn with a dashed line and a filled circular head, as
shown in Table 1. The arrows are drawn from the source of authority to the element governed by it.

Decision Model and Notation 1.3 41

6.2.3 Connection rules

The rules governing the permissible ways of connecting elements with requirements in a DRD are described in Clause
6.2.2 above and summarized in Table 2. For clarity, a simple DRD is shown for each permissible connection. In each of
these diagrams, the upper (“to”) element requires the lower (“from”) element.

Note that no requirements may be drawn terminating in Input Data, that is, input data may have no requirements. Note
also that the type of the requirement is uniquely determined by the types of the two elements connected.

Table 2: Requirements connection rules

From To (Required by) Requirement Diagram
Decision Decision Information
/
Decision Knowledge Source Authority g
-
Business Knowledge Model Decision Knowledge I:I
.
Business Knowledge Model | Business Knowledge Model Knowledge Q
.
Decision Service Decision Knowledge

Rl

il

Decision Model and Notation 1.3 42

From To (Required by) Requirement Diagram
Decision Service Business Knowledge Model Knowledge Q
Input data Decision Information f
Input data Knowledge Source Authority g
Knowledge Source Decision Authority
Knowledge Source Business Knowledge Model Authority D
Knowledge Source Knowledge Source Authority I:‘

6.2.4 Partial views and hidden information

The metamodel (see 6.3) provides properties for each of the DRG elements which would not normally be displayed on the
DRD, but provide additional information about their nature or function. For example, for a Decision these include
properties specifying which BPMN processes and tasks make use of the Decision. Implementations SHALL provide
facilities for specifying and displaying such properties.

For any significant domain of decision-making a DRD representing the complete DRG may be a large and complex
diagram. Implementations MAY provide facilities for displaying DRDs which are partial or filtered views of the DRG,
e.g., by hiding categories of elements, or hiding or collapsing areas of the network. DRG Elements with requirements not

Decision Model and Notation 1.3 43

displayed on the current DRD SHOULD be notated with an ellipsis (...) to show that this is the case. For example, see
Figure 11.5.

Two examples of DRDs providing partial views of a DRG are shown in Figure 6.5: DRD 1 shows only the immediate
requirements of a single decision; DRD 2 shows only Information Requirements and the elements they connect.

focus on Decision 1

. o Business
ecision knowledge 1

P

. Business B
Decision 1 ——-r knowledge 1 J (Input data 1) Demf[on2

isi Business
(Inputdata 1) Decision 2 ——‘(knowledge 2 J 3 DRD2 .

Y
(Inputdata2) Decision 1

(Input data 1) Decision 2 .
I
(Inputdata2)

Figure 6.5: DRDs as partial views of a DRG

DRDs can be interchanged using the Diagram Interchange mechanism defined in section 13.

6.2.5 Decision service

A Decision Service is represented in a DRD as rectangle with rounded corners, drawn with a heavy solid border. The
Name of the Decision Service MUST be displayed inside the shape unless it is overridden by the text attribute of the
associated DMNDI:DMNLabel element, which MUST be displayed instead. The border SHALL enclose all the
encapsulated decisions, and no other decisions or input data. The border MAY enclose other DRG elements but these
will not form part of the definition of the Decision Service.

If the set of output decisions is smaller than the set of encapsulated decisions, the Decision Service SHALL be divided
into two parts with a straight solid line. One part SHALL enclose only the output decisions and the Decision Service's
Name; the other part SHALL enclose all the encapsulated decisions which are not in the set of output decisions. Either
part MAY enclose other DRG elements but these will not form part of the definition of the Decision Service.

Figure 6.6 shows a Decision Service with two output decisions; other examples (with a single output decision) are shown
in Figure 5.10 and Figure 5.11.

Decision Model and Notation 1.3 44

Decision 1 Decision Service 1 Decision 3

Decision 2

| Input data 1) [Input data 2 l | Inputdata 3)

Figure 6.6: Decision Service notation

A decision service may be defined in one DRD and then shown in a different DRD when invoked internally within the
decision model by another decision. In the case of a decision service invocation internal to the decision model, a decision
service may also be shown without the details of its definition, as in a “collapsed state”. Figure 6.7 consists of two
separate diagrams: DRD 1 shows the definition of Decision service 1. In DRD 2, the same Decision service 1 is shown as
invoked by Decision 5. In DRD 2, Decision service 1 is shown in a collapsed form.

DRD 1 DRD 2

Decizion service 1

Decizton service 1 I,____
Enowledge &l

£)
] Decizion 2 ‘ ‘ Decizion 3 ‘
i [[

Decizion 5

Decizion 6

Input data 2

ﬂusiﬂess
knowledge 1 Decision 4 (Imputdaa1)

Figure 6.7: A decision service in expanded and collapsed form

DRD 1 in Figure 6.7 shows that Decision service 1 has 2 inputs: Decision 4 and Input data 1. It is therefore inferred that
Decision Service 1 has 2 input parameters with matching characteristics to Decision 4 and Input data 1. DRD 2 in Figure
6.7 shows that Decision 5 has 2 dependencies but whether these are mapped as parameters for the invocation of Decision
Service 1 cannot be determined from the diagram.

The information and authority requirements defined on Decision 2 in DRD 1 are not depicted in the collapsed form of
Decision Service 1 shown in DRD 2.

Decision Model and Notation 1.3 45

DRD 3

Business
knowledge 1

(Decision service 1

Decizion 1

i

e

Decizion 5

~

Decizion 2

Decizion 3

(L" &

[

J

Decizion 4

Figure 6.8: A decision service invoked in an expanded form

(Inputdatal)

Input data 2

™

Decizion &

DRDs 1 and 2 in Figure 6.7 and DRD 3 in Figure 6.8 are all congruent within the same DRG. They all show different
aspects of Decision Service 1. DRD 3 shows an expanded form Decision service 1 being invoked by Decision 5.

The constraint imposed on the rendering of decision services within a DRD is that the same decision service MUST NOT
be rendered both expanded and collapsed within the same DRD. This stems from the general restriction disallowing the

same DMN Element to be present twice in the same diagram.

Decision 7

Knowledge

spurce 1

(_DEE:{SiDﬂ gervice 1

Decizion 1

™~

AN

N N

™~

Decizion 2

Decizion 3

F 3

J

I/Businesz
knowledge 1

Decizion 4

[Inputdatal)

Figure 6.9: A decision service defined as an overlay

Decizion 3

™~

Decizion 6

Input data 2

Decision services are defined as overlays and therefore do not encapsulate the decisions within them. Therefore, the
richness of connections depicted in Figure 6.9 is allowed. In this DRD, Decision 7 is dependent on Decision 2.

Decision Model and Notation 1.3

6.3 Metamodel

6.3.1 DMN Element metamodel

L ey YT !

+description : String [0..1]
+extensionAttribute |0.* Hianel - Btring 10 M etensionElements 0. -
ExtensionAttribute ExtensionElements

|Amracr | ‘Inpulclause| |Expressmn |

‘Decls\onﬂuls | |DulputCIause | -" |UnaryTesls ‘

+name : String [1]

||:

| |._. ment | ‘r‘" ‘ ||n|or.. ..‘ |rlem[‘ |

BusinessContextElement I I |
|Decls|on| | Invocable | ‘Knowledgesaurce |

| —

LiteralExpression DecisionTable
‘ Perform

|Con(exl| |Funcl|DnDEl|mI|on| |Ra|al|on |

‘ |Dr lc‘ |InputDaL3| |L | |[- me|

Figure 6.10: DMNElement Class Diagram

DMNElement is the abstract superclass for the decision model elements. It provides the optional attributes id,
description and 1abel, which are Strings which other elements will inherit. The id of a DMNElement is further
restricted to the syntax of an XML ID (http://www.w3.0org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID),

and SHALL be unique within the decision model.

DMNElement has abstract specializations NamedElement and Expression, and concrete specialization
UnaryTests. NamedElement adds the required attribute name, and includes the abstract specializations
BusinessContextElement and DRGElement, as well as concrete specializations Definitions,
ItemDefinition, InformationItem, ElementCollection and DecisionService.

Table 3 presents the attributes and model associations of the DMNE lement element.

Table 3: DMNE lement attributes and model associations

Attribute

Description

id: ID [0..1]

Optional identifier for this element. SHALL be unique within
its containing Definitions element.

description: String [0..1]

A description of this element.

label: String [0..1]

An alternative short description of this element. It should
primarily be used on elements that do not have a name
attribute, e.g., an Input Expression. Similar to the
description attribute, it has no notation defined and is
neither related to the DMNLabel element that is used in
Diagram Interchange nor to the outputLabel attribute of a
Decision Table.

extensionElements: ExtensionElement [0..1]

This attribute is used as a container to attach additional
elements to any DMN Element. See 6.3.16 for additional
information on extensibility.

Decision Model and Notation 1.3

47

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID

Attribute

Description

extensionAttributes: ExtensionAttribute [0..¥]

This attribute is used to attach named extended attributes
and model associations. This association is not applicable
when the XML schema interchange is used, since the XSD
mechanism for supporting "anyAttribute" from other
namespaces already satisfies this requirement. See 6.3.16
for additional information on extensibility.

Table 4: NamedElement attributes and model associations

Attribute

Description

name: string

The name of this element.

6.3.2 Definitions metamodel

NamedElement

\ BusinessContextElement |

0..* |+businessContextElement

+elementCollection | HBementCollection

Definitions

+itemDefinition

-1
Item Definition | 0-- +names pace - URI [1]

+ex pressionLanguage : URI [0..1]
+ypelLanguage : URI [0..1]
+ex porter : String [0..1] 1 0.~

[
0.~
+drgBlement [0..*

DRGEIement

+drgElement

Im port 7 +ex porterVersion : String [0..1]
+importType : URI[1] Hmport
+locationURI : URI [0..1] 0..*

+dmnDl | ppNDI::DMNDI

+namespace : URI [1]

+artifact

0.* TextAnnotation

—|>| DM NElement

+sourceRef |1

+targetRef |1

+outgoingRefs |0..* +incomingRefs |0..*

Association
+associationDirection : AssociationDirection

«enumeration»
AssociationDirection
None

One
Both

Artifact

1 0.1

+ext : String [1]
+textFormat : String = “tex t/plain”

Group
+name : String [0..1]

Figure 6.11: Definitions Class Diagram

Decision Model and Notation 1.3

48

Alan Fish, 06/25/19
DMN13-6

The Definitions class is the outermost containing object for all elements of a DMN decision model. It defines the
scope of visibility and the namespace for all contained elements. Elements that are contained in an instance of
Definitions have their own defined life-cycle and are not deleted with the deletion of other elements. The
interchange of DMN files will always be through one or more Definitions.

Definitions is a kind of NamedElement, from which an instance of Definitions inherits the name and
optional id, description and label attributes, which are Strings.

An instance of Definitions has a namespace, which is a String. The name space identifies the default target
namespace for the elements in the Definitions and follows the convention established by XML Schema.

An instance of Definitions may specify an expressionLanguage, which is a URI that identifies the default
expression language used in elements within the scope of this Definitions. This value may be overridden on each
individual LiteralExpression. The language SHALL be specified in a URI format. The default expression
language is FEEL (clause 10), indicated by the URI:

” e simple
expression language S-FEEL (clause 9), being a subset of FEEL, is indicated by the same URI. DMN prs a URI for
expression languages that are not meant to be interpreted automatically (e.g., pseudo-code that may resemble FEEL but is
not): "http://www.omg.org/spec/ DMN/uninterpreted/20140801".

An instance of Definitions may specify a typeLanguage, which is a URI that identifies the default type language
used in elements within the scope of this Definitions. For example, a t ypeLanguage value of
“http://www.w3.0rg/2001/XMLSchema” indicates that the data structures defined within that Definitions are, by
default, in the form of XML Schema types. If unspecified, the default t ypeLanguage is FEEL. This value may be
overridden on each individual TtemDefinition. The typeLanguage SHALL be specified in a URI format (the

URI for FEEL is “ E
the URI "http://www.omg.org/spec/DMN/uninterpreted/20140801" can be used to indicate that a type definition is not
meant to be interpreted)).

An instance of Definitions may specify an exporter and exporterVersion, which are Strings naming the
tool and version used to create the XML serialization. In standards such as BPMN, this has been found to aid in model
interchange between tools.

An instance of Definitions is composed of zero or more drgElements, which are instances of DRGElement, zero
or more elementCollections, which are instances of ElementCollection, zero or more itemDefinitions,

which are instances of ITtemDefinition and of zero or more businessContextElements, which are instances of
BusinessContextElement.

It may contain any number of associated import, which are instances of Import. Imports are used to import
elements defined outside of this Definitions, e.g. in other Definitions elements, and to make them available for
use by elements in this Definitions.

Definitions inherits all the attributes and model associations from NamedElement. Table 5 presents the additional
attributes and model associations of the Definitions element.

Table 5: Definitions attributes and model associations

Attribute Description

namespace: anyURI [1] This attribute identifies the namespace associated with this
Definitions and follows the convention established by
XML Schema.

Decision Model and Notation 1.3 49

Alan Fish, 10/11/19
DMN13-188

Alan Fish, 10/11/19
DMN13-188

Attribute Description

expressionLanguage: anyURI [0..1] This attribute identifies the expression language used in
LiteralExpressions within the scope of this Definitions.
The Default is FEEL (clause 10). This value MAY be
overridden on each individual LiteralExpression. The
language SHALL be specified in a URI format.

typeLanguage: anyURI [0..1] This attribute identifies the type language used in
LiteralExpressions within the scope of this
Definitions. The Defaultis FEEL (clause 10). This value
MAY be overridden on each individual ITtemDefinition.
The language SHALL be specified in a URI format.

exporter: string [0..1] This attribute names the tool used to export the XML
serialization.
exporterVersion: string [0..1] This attribute names the version of the tool used to export

the XML serialization.

itemDefinition: TtemDefinition [*] This attribute lists the instances of ITtemDefinition that
are contained in this Definitions.

drgElement: DRGElement [*] This attribute lists the instances of DRGElement that are
contained in this Definitions.

businessContextElement: This attribute lists the instances of

BusinessContextElement [*] BusinessContextElement that are contained in this
Definitions.

elementCollection: ElementCollection [*] This attribute lists the instances of ElementCollection

that are contained in this Definitions.

import: Import [*] This attribute is used to import externally defined elements
and make them available for use by elements in this
Definitions.

artifact: Artifact [0..%] Artifacts include text annotations Eassociations
among DMN elements.

dmnDI: DMNDT [0..1] This attribute contains the Diagram Interchange information
contained within this Definitions (see Clause 13 for
more information on the DMN Diagram Interchange).

6.3.3 Import metamodel

The Import class is used when referencing external elements, either DMN DRGElement or TtemDefinition
instances contained in other Definitions elements, or non-DMN elements, such as an XML Schema or a PMML file.
Imports SHALL be explicitly defined.

An instance of Import has an importType, which is a String that specifies the type of import associated with the
element. For example, a value of “http://www.w3.0rg/2001/XMLSchema” indicates that the imported element is an XML
schema. The DMN namespace indicates that the imported element is a DMN Definitions element.

The location of the imported element may be specified by associating an optional 1ocationURI with an instance of
Import. The locationURI isa URL

Decision Model and Notation 1.3 50

Alan Fish, 06/25/19
DMN13-6

An instance of Import has a namespace, which is a URI that identifies the namespace of the imported element, and
also a name, inherited from NamedElement, which is a string that serves as a prefix in namespace-qualified names,
such as typeRefs specifying imported TtemDefinitions and expressions referencing imported
InformationItems. The namespace value should be globally unique, but the import name, which is typically a
short business-friendly name,must be distinct from the names of other imports, decisions, input data, business knowledge
models, decision services, and item definitions within the importing model only.

Table 6 presents the attributes and model associations of the Import element.

Table 6: Import attributes and model associations

Attribute Description

importType: anyURI Specifies the style of import associated with this Import.
locationURI: anyURI [0..1] Identifies the location of the imported element.
namespace: anyURI Identifies the namespace of the imported element.

6.3.4 Element Collection metamodel

The ElementCollection class is used to define named groups of DRGElement instances. ElementCollections may
be used for any purpose relevant to an implementation, for example:

e To identify the requirements subgraph of a set one or more decisions (i.e., all the elements in the closure of the
requirements of the set).

e To identify the elements to be depicted on a DRD.

ElementCollection is akind of NamedElement, from which an instance of ElementCollection inherits the
name and optional id, description and label attributes, which are Strings. The id of an ElementCollection
element SHALL be unique within the containing instance of Definitions.

An ElementCollection element has any number of associated drgElements, which are the instances of
DRGElement that this ElementCollection defines together as a group. Notice that an ElementCollection
element must reference the instances of DRGElement that it collects, not contain them: instances of DRGElement can
only be contained in Definitions elements.

ElementCollection inherits all the attributes and model associations from NamedElement. Table 7 presents the
additional attributes and model associations of the ElementCollection element.

Table 7: ElementCollection attributes and model associations

Attribute Description

drgElement: DRGElement [*] This attribute lists the instances of DRGElement that this
ElementCollection groups.

6.3.5 DRG Element metamodel

DRGElement is the abstract superclass for all DMN elements that are contained within Definitions and that have a
graphical representation in a DRD. All the elements of a DMN decision model that are not contained directly in a
Definitions element (specifically: all three kinds of requirement, bindings, clause and decision rules, import, and

Decision Model and Notation 1.3 51

objective) SHALL be contained in an instance of DRGElement, or in a model element that is contained in an instance of
DRGElement, recursively.

The specializations of DRGElement are Decision, InputData, Invocable, and

KnowledgeSource. Invocable is further specialized into BusinessKnowledgeModel and
DecisionService.

DRGElement is a specialization of NamedElement, from which it inherits the name and optional id,
description and label attributes. The id of a DRGElement element SHALL be unique within the containing
instance of Definitions.

A Decision Requirements Diagram (DRD) is the diagrammatic representation of one or more instances of
DRGElement and their information, knowledge and authority requirement relations. The instances of DRGElement are
represented as the vertices in the diagram; the edges represent instances of InformationRequirement,
KnowledgeRequirement or AuthorityRequirement (see clauses 6.3.13, 6.3.14 and 6.3.15). The connection
rules are specified in 6.2.3).

DRGElement inherits all the attributes and model associations of NamedElement. It does not define additional
attributes and model associations of the DRGElement element.

6.3.6 Artifact metamodel

Artifacts are used to provide additional information about a Decision Model. DMN provides two standard
Artifacts: Association and Text Annotation.Associations canbeusedto link Artifactstoany
DMNElement.

6.3.6.1 Association

An Association is used to link information and Artifacts with DMN graphical elements. Text Annotationsand
other Artifacts can be associated with the graphical elements. An arrowhead on the Association indicates a
direction of flow (e.g., data), when appropriate.

The Association element inherits the attributes and model associations of DMNE lement (see Table 3). Table 8
presents the additional attributes and model associations for an Association.

Table 8: Association attributes and model associations:

Attribute Description
associationDirection: AssociationDirection = None associationDirection is an attribute that defines whether or
{None | One | Both} not the Association shows any directionality with an

arrowhead. The default is None (no arrowhead). A value of
One means that the arrowhead SHALL be at the Target
Object. A value of Both means that there SHALL be an
arrowhead at both ends of the Association line.

sourceRef: DMNElement [1] The DMNElement that the Association is connecting
from.
targetRef: DMNElement [1] The DMNElement that the Association is connecting to.

Decision Model and Notation 1.3 52

| 6.3.6.2 Group

The Group object is an Artifact that provides a visual mechanism to group elements of a diagram informally.
Groups are often used to highlight certain sections of a Diagram without adding additional constraints for performance.
The highlighted (grouped) section of the Diagram can be separated for reporting and analysis purposes. Groups do not
affect the execution of the Decisions.

As an Artifact. a Group is not a DRGElement. and. therefore. cannot be connected to/from an Information
Requirement, Knowledge Requirement, or Authority Requirement. It can only be connected to/from an Association.

The Group element inherits the attributes and model associations of Artifact. Table 9 presents the additional

attributes and model associations for a Group.

‘ Table 9: Group model associations

\ Attribute Description
‘ name: String[0..1] The descriptive name of the element.

=]
6.3.6.3 Text Annotation

Text Annotations are a mechanism for a modeler to provide additional text information for the reader of a DMN Diagram

The TextAnnotation element inherits the attributes and model associations of DMNElement (see Table 3). Table 10
presents the additional attributes for a TextAnnotation.

Table 10: TextAnnotation attributes

Attribute Description

text: string Text is an attribute that is text that the modeler wishes to
communicate to the reader of the Diagram.

textFormat: string = "text/plain" This attribute identifies the format of the text. It SHALL
follow the mime-type format. The default is "text/plain."

Decision Model and Notation 1.3 53

Alan Fish, 06/25/19
DMN13-6

6.3.7 Decision metamodel

DIMNElement

NamedElement

BPMNZ0::Process

+usingProcess [0.*)
+usingTask [pppN20:Task
0.
T BMM::Objective
0.*

| BusinessContextElameant |

DRGElement

+impactin

gDecizion

OrganisationalUnit | | Performancelndicator | +supportedObjective
[—T
+decizionOwner |0..* |0.* 0.*
+decizionMaker +impactedPerfgrmancelndicato

| invocabie

+reguiredknowledge |1

0.

+decisionMade

0=

0.

0.*

Decision

+question : String [0..1]

|KnowledgeRequirement |

+knowledgeRegquirement

0.*

+decizionOwned |+gllowedAnswers : String [0..1] 0.1
ressi . . 0.*

IE_p 1o [rdecisionl ogic +authorttyRequirement AuthorityRequirement
+value [0.* 0.1 0.1 0.1 0.*

+decisionOutput 0=
=ftype [0.1 0.1

—@finition +requiredDecision (0.1 1 requiredAuthority | 0.1
. . Knowledge Source
+type | 0.1 0. 0.
J P InformationRequirement +requiredinput [InputData
: -
Informationltern [*variable 0.* 0.1
0.1

+variable |0..1

+inputData|0..1

Figure 6.12: Decision Class Diagram

The class Decision is used to model a decision.

Decision is a concrete specialization of DRGElement and it inherits the name and optional id, description and
label attributes from NamedElement The name of an Invocable must be different from the name of any other
invocable, input data, decision, or import in the decision model.

In addition, it may have a question and allowedAnswers, which are all strings. The optional description
attribute is meant to contain a brief description of the decision-making embodied in the Decision. The optional
question attribute is meant to contain a natural language question that characterizes the Decision such that the
output of the Decision is an answer to the question. The optional allowedAnswers attribute is meant to contain a
natural language description of the answers allowed for the question such as Yes/No, a list of allowed values, a range of
numeric values etc.

In a DRD, an instance of Decision is represented by a decision diagram element.

A Decision element is composed of an optional decisionLogic, which is an instance of Expression, and of
zero or more informationRequirement, knowledgeRequirement and authorityRequirement
elements, which are instances of InformationRequirement, KnowledgeRequirement and
AuthorityRequirement, respectively.

Decision Model and Notation 1.3 54

In addition, a Decision defines an InformationItem representing its output. This InformationItem may
include an optional typeRe f, which references an TtemDefinition or other type definition specifying the datatype
of the possible outcomes of the Decision.

The requirement subgraph of a Decision element is the directed graph composed of the Decision element itself,
its informationRequirements, its knowledgeRequirements, and the union of the requirement subgraphs of
each requiredDecision or requiredKnowledge element: that is, the requirement subgraph of a Decision
element is the closure of the informationRequirement, requiredInput, requiredDecision,
knowledgeRequirement and requiredKnowledge associations starting from that Decision element.

An instance of Decision — that is, the model of a decision — is said to be well-formed if and only if all of its
informationRequirement and knowledgeRequirement elements are well-formed, That condition entails, in
particular, that the requirement subgraph of a Decision element SHALL be acyclic, that is, that a Decision element
SHALL not require itself, directly or indirectly.

Besides its logical components: information requirements, decision logic etc, the model of a decision may also document
a business context for the decision (see clause 6.3.8 and Figure 6.13).

The business context for an instance of Decision is defined by its association with any number of
supportedObjectives, which are instances of Objective as defined in OMG BMM, any number of
impactedPerformanceIndicators, which are instances of PerformanceIndicator, any number of
decisionMaker and any number of decisionOwner, which are instances of OrganisationalUnit.

In addition, an instance of Decision may reference any number of usingProcess, which are instances of Process
as defined in OMG BPMN 2.0, and any number of usingTask, which are instances of Task as defined in OMG
BPMN 2.0, and which are the Processes and Tasks that use the Decision element.

Decision inherits all the attributes and model associations from DRGElement. Table 11 presents the additional
attributes and model associations of the Decision class.

Table 11: Decision attributes and model associations

Attribute Description

question: string [0..1] A natural language question that characterizes the
Decision such that the output of the Decision is an
answer to the question.

allowedAnswers: string [0..1] A natural language description of the answers allowed for
the question such as Yes/No, a list of allowed values, a
range of numeric values etc.

variable: InformationItem The instance of InformationItem that stores the result of
this Decision.

decisionLogic: Expression [0..1] The instance of Expression that represents the decision
logic for this Decision.

informationRequirement: InformationRequirement [*] | This attribute lists the instances of
InformationRequirement that compose this
Decision.

knowledgeRequirement: KnowledgeRequirement [*] This attribute lists the instances of
KnowledgeRequirement that compose this Decision.

Decision Model and Notation 1.3 55

Attribute

Description

authorityRequirement: AuthorityRequirement [*]

This attribute lists the instances of
AuthorityRequirement that compose this Decision.

supportedObjective: BMM: : Objective [*]

This attribute lists the instances of BMM: : Objective that
are supported by this Decision.

impactedPerformancelndicator:
PerformancelIndicator [*]

This attribute lists the instances of
PerformanceIndicator that are impacted by this
Decision.

decisionMaker: OrganisationalUnit [*]

The instances of OrganisationalUnit that make this
Decision.

decisionOwner: OrganisationalUnit [*]

The instances of OrganisationalUnit that own this
Decision.

usingProcesses: BPMN::process [*]

This attribute lists the instances of BPMN::process that
require this Decision to be made.

usingTasks: BPMN: : task [*]

This attribute lists the instances of BPMN: : task that make
this Decision.

6.3.8 Business Context Element metamodel

DMNElement
NamedElement

BusinessContextElement

+URI: URI[0..1]

I

Performancelndicator

simpactedPerformanceindicator |0 LimpactingDecision

0.*

+decisionMade +decisionMaker

Decision - - OrganisationalUnit
+decisionOwned +decisionOwner
0.= 0.*

0.* | +supportedDecision

0.* | +supportedObjective

Objective

Figure 6.13: BusinessContextElement class diagram

Decision Model and Notation 1.3

56

The abstract class BusinessContextElement, and its concrete specializations Per formanceIndicator and
OrganizationUnit are placeholders, anticipating a definition to be adopted from other OMG meta-models, such as
OMG OSM when it is further developed.

BusinessContextElement is a specialization of NamedElement, from which it inherits the name and optional
id, description and label attributes.

In addition, instances of BusinessContextElements may have a URI, which is a URI, and

e aninstance of PerformanceIndicator references any number of impactingDecision, which are the
Decision elements that impact it;

e aninstance of OrganisationalUnit references any number of decisionMade and of
decisionOwned, which are the Decision elements that model the decisions that the organization unit
makes or owns.

BusinessContextElement inherits all the attributes and model associations from NamedElement. Table 12
presents the additional attributes and model associations of the BusinessContextElement class.

Table 12: BusinessContextElement attributes and model associations

Attribute Description

URI: anyURI [0..1] The URI of this BusinessContextElement.

PerformanceIndicator inherits all the attributes and model associations from BusinessContextElement.
Table 13 presents the additional attributes and model associations of the PerformanceIndicator class.

Table 13: PerformanceIndicator attributes and model associations

Attribute Description

impactingDecision: Decision [*] This attribute lists the instances of Decision that impact
this PerformanceIndicator.

OrganisationalUnit inherits all the attributes and model associations from BusinessContextElement. Table
14 presents the additional attributes and model associations of the OrganisationalUnit class.

Table 14: OrganisationalUnit attributes and model associations

Attribute Description

decisionMade: Decision [*] This attribute lists the instances of Decision that are made
by this OrganisationalUnit.

decisionOwned: Decision [*] This attribute lists the instances of Decision that are
owned by this OrganisationalUnit.

Decision Model and Notation 1.3 57

6.3.9 Business Knowledge Model metamodel

DMNElement

NamedElement

Expression DRGElemeant Knowledge Source
oo | v |]

+body (0.1 T +reguired&uthority (0.1

n +variable
Informationltem oot
0.1
0..*|+formalParameter } DecisionService

T +requiredknowledge

0.*

FunctionDefinition |D..1 . BusinessKnowledgeMaodel +authortyRequirement AuthorityRequirement
+encapsulatedLogic 0.*

+knowledgeReguirement |0..*

KnowledgeRequirement

Figure 6.14: BusinessKnowledgeModel class diagram

A business knowledge model has an abstract part, representing reusable, invocable decision logic, and a concrete part,
which mandates that the decision logic must be a single FEEL boxed function definition. A decision service is also an
invocable element, and thus can be invoked as required knowledge from other decisions and business knowledge models.

The class Invocable is used to model an invocable element and the class BusinessKnowledgeModel is used to
model a business knowledge model.

Invocable is a specialization of DRGElement and it inherits the name and optional id, description, and label
attributes from NamedElement. The name of an Invocable must be different from the name of any other invocable,
input data, decision, or import in the decision model. BusinessKnowledgeModel is a specialization of Invocable
from which it additionally inherits the variable attribute.

A BusinessKnowledgeModel element may have zero or more knowledgeRequirement, which are instance of
KnowledgeRequirement, and zero or more authorityRequirement, which are instances of
AuthorityRequirement. These model elements are described below.

The requirement subgraph of a BusinessKnowledgeModel element is the directed graph composed of the
BusinessKnowledgeModel element itself, its knowledgeRequirement elements, and the union of the
requirement subgraphs of all the requiredKnowledge elements that are referenced by its
knowledgeRequirements.

An instance of BusinessKnowledgeModel is said to be well-formed if and only if, either it does not have any
knowledgeRequirement, or all of its knowledgeRequirement elements are well-formed. That condition

Decision Model and Notation 1.3 58

entails, in particular, that the requirement subgraph of a BusinessKnowledgeModel element SHALL be acyclic, that
is, that a BusinessKnowledgeModel element SHALL not require itself, directly or indirectly.

At the decision logic level, a BusinessKnowledgeModel element contains a FunctionDefinition, which is an
instance of Expression containing zero or more parameters, which are instances of InformationItem. The
FunctionDefinition thatis contained in a BusinessKnowledgeModel element is the reusable module of
decision logic that is represented by this BusinessKnowledgeModel element. An Invocable element contains an
InformationItem that holds an invocable reference to the abstract business knowledge, which allows a Decision
to invoke it by name. The name of that InformationItem SHALL be the same as the name of the Invocable
element. Invocable inherits all the attributes and model associations from DRGE1ement.Table 15 presents the
additional attributes and model associations of the Invocable class. Table 16 presents the additional attributes and
model associations of the BusinessKnowledgeModel class.

Table 15: Invocable attributes and model associations

Attribute Description

variable: InformationItem This attribute defines a variable that is bound to the
function defined by the FunctionDefinition, allowing
decision logic to invoke the function by name.

Table 16: BusinessKnowledgeModel attributes and model associations

Attribute Description

encapsulatedLogic: FunctionDefinition [0..1] The function that encapsulates the logic encapsulated by
this BusinessKnowledgeModel.

knowledgeRequirement: KnowledgeRequirement [*] This attribute lists the instances of
KnowledgeRequirement that compose this
BusinessKnowledgeModel.

authorityRequirement: AuthorityRequirement [*] This attribute lists the instances of
AuthorityRequirement that compose this
BusinessKnowledgeModel.

Decision Model and Notation 1.3 59

6.3.10 Decision service metamodel

Invocable

DecisionService

+decizionService |0..* +decigionService |0.* +decisionService |0..* +decigion3ervice |0..*

+inputDecision | 0..* +gncapsulatedDecision |0..* +gutputDecision |0..*

+inputData |0..*

InputData Decision

Figure 6.15: DecisionService class diagram

The DecisionService class is used to define named decision services against the decision model contained in an
instance of Definitions.

DecisionService is akind of Invocable element, from which an instance of DecisionService inherits the
name and optional id, description, and label attributes, which are Strings, and a variable, which is an
InformationItem. The id ofa DecisionService element SHALL be unique within the containing instance of
Definitions. The name of the variable and the name of the DecisionService SHALL be the same. This
name may be used to invoke a DecisionService from the decision logic of another decision or business knowledge
model.

A DecisionService element has one or more associated outputDecisions, which are the instances of
Decision required to be output by this DecisionService, i.e. the Decisions whose results the Decision Service
must return when called.

A DecisionService element has zero or more encapsulatedDecisions, which are the instances of
Decision required to be encapsulated by this DecisionService, i.e. the Decisions to be evaluated by the Decision
Service when it is called.

A DecisionService element has zero or more inputDecisions, which are the instances of Decision required
as input by this DecisionService, i.e., the Decisions whose results will be provided to the Decision Service when it
is called.

A DecisionService element has zero or more inputData, which are the instances of InputData required as
input by this DecisionService, i.e., the Input Data which will be provided to the Decision Service when it is called.

The encapsulatedDecisions, inputDecisions and inputData attributes are optional. At least one of the
encapsulatedDecisions and inputDecisions attributes SHALL be specified.

The requirement subgraph of a DecisionService element is the directed graph composed of the
DecisionService element itself and the union of the requirement subgraphs of all the Decision elements that are
referenced by its encapsulatedDecisions and outputDecisions.

Decision Model and Notation 1.3 60

An instance of DecisionService is said to be well-formed if and only if its requirement subgraph is acyclic, that
is, thata DecisionService element SHALL not require itself, directly or indirectly.

DecisionService inherits all the attributes and model associations from Invocable. Table 17 presents the
additional attributes and model associations of the DecisionService element.

Table 17: DecisionService attributes and model associations

Attribute

Description

outputDecisions: Decision [1..”]

This attribute lists the instances of Decision required to
be output by this DecisionService.

encapsulatedDecisions: Decision [0..%]

If present, this attribute lists the instances of Decision to
be encapsulated in this DecisionService

inputDecisions: Decision [0..]

If present, this attribute lists the instances of Decision
required as input by this DecisionService.

inputData: InputData [0..*]

If present, this attribute lists the instances of InputData
required as input by this DecisionService

6.3.11 Input Data metamodel

Decision Model and Notation 1.3

ItemDefinition

DANElement
Fa

NamedElemeant

+itype (0.1

+item (0..®

Informationltem

+variable

&

Fay

DRGElemeant
Fiy

Inputlata

Figure 6.16: InputData class diagram

61

DMN 4.—1& the class InputData to model the inputs of a decision whose values are defined outside of the
decision moder

InputData is a concrete specialization of DRGE lement and it inherits the name and optional id, description
and label attributes from NamedElement. The name of an InputData must be different from the name of any
other decision, input data, business knowledge model, decision service, or import in the decision model.

An instance of InputData defines an InformationItem that stores its value. This InformationItem may
include a t ypeRef that specifies the type of data that is this InputData represents, either an ITtemDefinition,
base type in the specified expressionLanguage, or imported type.

In a DRD, an instance of InputData is represented by an input data diagram element. An InputData element does
not have a requirement subgraph, and it is always well-formed.

InputData inherits all the attributes and model associations from DRGE lement. Table 18 presents the additional
attributes and model associations of the TnputData class.

Table 18: InputData attributes and model associations

Attribute Description

variable: InformationItem The instance of InformationItem that stores the result of
this InputData.

6.3.12 Knowledge Source metamodel

DRGElement

BusinessKnowledgeModel | | Decision | InputData Knowledge Source
: +type : String [0..1
+requiredDecision (0.1 +requiredinput (0..1 +?'.Ener:Drggénisgtiunﬂlumt[l].j]
0.1 0.1 +locationURI : URI[D..1]

+reguiredAuthority (0.1

0.1
+requiresAuthority |0..* 0.*)]
AuthorityRequirement *requiresAuthority
*
o 0.
+requiresAuthority [0..* 0.*

Figure 6.17: KnowledgeSource class diagram

The class KnowledgeSource is used to model authoritative knowledge sources in a decision model.

In a DRD, an instance of KnowledgeSource is represented by a knowledge source diagram element.

Decision Model and Notation 1.3 62

Alan Fish, 10/23/19
Editorial

KnowledgeSource is a concrete specialization of DRGE 1ement, and thus of NamedElement, from which it inherits
the name and optional 1d, description and label attributes. In addition, a KnowledgeSource has a
locationURI, which is a URL It has a t ype, which is a string, and an owner, which is an instance of
OrganisationalUnit. The type is intended to identify the kind of the authoritative source, e.g., Policy Document,
Regulation, Analytic Insight.

A KnowledgeSource element is also composed of zero or more authorityRequirement elements, which are
instances of AuthorityRequirement.

KnowledgeSource inherits all the attributes and model associations from DRGE1lement. Table 19 presents the
attributes and model associations of the KnowledgeSource class.

Table 19: KnowledgeSource attributes and model associations

Attribute Description

locationURI: anyURI [0..1] The URI where this KnowledgeSource is located. The
locationURI SHALL be specified in a URI format.

type: string [0..1] The type of this KnowledgeSource.

owner: OrganisationalUnit [0..1] The owner of this KnowledgeSource.

authorityRequirement: AuthorityRequirement [*] This attribute lists the instances of
AuthorityRequirement that contribute to this
KnowledgeSource.

6.3.13 Information Requirement metamodel

The class InformationRequirement is used to model an information requirement, as represented by a plain
arrow in a DRD. InformationRequirement is a specialization of DMNElement, from which it inherits the
optional id, description, and 1abel attributes.

An InformationRequirement element is a component of a Decision element, and it associates that requiring
Decision element with a requiredDecision element, which is an instance of Decision, ora
requiredInput element, which is an instance of InputData.

An InformationRequirement element references an instance of either a Decision or InputData, which
defines a variable. That variable, which is an instance of InformationItem, represents the
InformationRequirement element at the decision logic level.

Notice that an InformationRequirement element must reference the instance of Decision or InputData that
it associates with the requiring Decision element, not contain it: instances of Decision or InputData can only be
contained in Definitions elements.

An instance of InformationRequirement is said to be well-formed if and only if all of the following are true:
e itreferences a requiredDecision ora requiredInput element, but not both,
e the referenced requiredDecision or requiredInput element is well-formed,

e the Decision element that contains the instance of InformationRequirement is not in the requirement
subgraph of the referenced requiredDecision element, ifthis InformationRequirement element
references one.

Decision Model and Notation 1.3 63

o the referenced requiredDecision or requiredInput element is defined in the same decision model or
in an imported decision model.

Table 20 presents the attributes and model associations of the InformationRequirement element.

Table 20: InformationRequirement attributes and model associations

Attribute Description

requiredDecision: Decision [0..1] The instance of Decision that this
InformationRequirement associates with its containing
Decision element.

requiredinput: InputbData [0..1] The instance of InputData that this
InformationRequirement associates with its containing
Decision element.

6.3.14 Knowledge Requirement metamodel

The class KnowledgeRequirement is used to model a knowledge requirement, as represented by a dashed arrow in
a DRD. KnowledgeRequirement is a specialization of DMNE1ement, from which it inherits the optional id,
description, and label attributes.

A KnowledgeRequirement element is a component of a Decision element or of a
BusinessKnowledgeModel element, and it associates that requiring Decision or BusinessKnowledgeModel
element with a requiredKnowledge element, which is an instance of Invocable.

Notice that a KnowledgeRequirement element must reference the instance of Invocable that it associates with
the requiring Decision or BusinessKnowledgeModel element, not contain it: instances of
BusinessKnowledgeModel can only be contained in Definitions elements.

An instance of KnowledgeRequirement is said to be well-formed if and only if all of the following are true:
e itreferences a requiredKnowledge element,
e thereferenced requiredKnowledge element is well-formed,

e ifthe KnowledgeRequirement element is contained in an instance of BusinessKnowledgeModel,
that BusinessKnowledgeModel element is not in the requirement subgraph of the referenced
requiredKnowledge element.

e the referenced requiredKnowledge element is defined in the same decision model or in an imported
decision model

Table 21 presents the attributes and model associations of the KnowledgeRequirement element.

Table 21: KnowledgeRequirement attributes and model associations

Attribute Description

requiredKnowledge: Invocable The instance of Invocable that this
KnowledgeRequirement associates with its containing
Decision Or BusinessKnowledgeModel element.

Decision Model and Notation 1.3 64

6.3.15 Authority Requirement metamodel

The class AuthorityRequirement is used to model an authority requirement, as represented by an arrow drawn
with a dashed line and a filled circular head in a DRD. AuthorityRequirement is a specialization of
DMNElement, from which it inherits the optional id, description, and 1abel attributes.

An AuthorityRequirement element is a component of a Decision, BusinessKnowledgeModel or
KnowledgeSource element, and it associates that requiring Decision, BusinessKnowledgeModel or
KnowledgeSource element with a requiredAuthority element, which is an instance of KnowledgeSource, a
requiredDecision element, which is an instance of Decision, or a requiredInput element, which is an
instance of InputData.

Notice that an AuthorityRequirement element must reference the instance of KnowledgeSource, Decision
or InputData that it associates with the requiring element, not contain it: instances of KnowledgeSource,
Decision or InputData can only be contained in Definitions elements.

Table 22 presents the attributes and model associations of the AuthorityRequirement element.

Table 22: AuthorityRequirement attributes and model associations

Attribute Description

requiredAuthority: KnowledgeSource [0..1] The instance of KnowledgeSource that this
AuthorityRequirement associates with its containing
KnowledgeSource, Decision or
BusinessKnowledgeModel element.

requiredDecision: Decision [0..1] The instance of Decision that this
AuthorityRequirement associates with its containing
KnowledgeSource element.

requiredinput: InputData [0..1] The instance of InputbData that this
AuthorityRequirement associates with its containing
KnowledgeSource element.

6.3.16 Extensibility

DMNElement
1 1
+egxtensionElements |0..* 0.* |+extensionAttribute
ExtenszionElements ExtenszionAttribute

+name : String [1]

1 1 0.®

+extensionElement |0..* +value (0.1 +valueRef |0 1

«Metaclasss
Element

Figure 6.18: Extensibility class diagram

Decision Model and Notation 1.3 65

The DMN metamodel is aimed to be extensible. This allows DMN adopters to extend the specified metamodel in a way
that allows them to be still DMN-compliant. It provides a set of extension elements, which allows DMN adopters to attach
additional attributes and elements to standard and existing DMN elements. This approach results in more interchangeable
models, because the standard elements are still intact and can still be understood by other DMN adopters. It's only the
additional attributes and elements that MAY be lost during interchange.

A DMN extension can be done using two different elements:

1. ExtensionElements

2. ExtensionAttribute
ExtensionElements is a container for attaching arbitrary elements from other metamodels to any DMN element.
ExtensionAttribute allows these attachments to also have name. This allows DMN adopters to integrate any
metamodel into the DMN metamodel and reuse already existing model elements.
6.3.16.1 ExtensionElements

The ExtensionElements element is a container to aggregate elements from other metamodels inside any
DMNE lement. Table 23 presents the attributes and model associations for the ExtensionElements element.

Table 23: ExtensionElements attributes and model associations

Attribute Description

extensionElement: Element [0..*] The contained Element. This association is not applicable when the XML
schema interchange is used, since the XSD mechanism for supporting "any"
elements from other namespaces already satisfies this requirement.

6.3.16.2 ExtensionAttribute

The ExtensionAttribute element contains an Element or a reference to an Element from another metamodel. An
ExtensionAttribute also has a name to define the role or purpose of the associated element. This type is not
applicable when the XML schema interchange is used, since the XSD mechanism for supporting "anyAttribute" from
other namespaces already satisfies this requirement. Table 24 presents the model associations for the
ExtensionAttribute element.

Table 24: ExtensionAttribute attributes and model associations

Attribute Description

name: string The name of the extension attribute.

value: Element [0..1] The contained Element. This attribute SHALL NOT be used together with valueRef.

valueRef: Element [0..1] A reference to the associated Element. This attribute SHALL NOT be used together with
value.

6.4 Examples
Examples of DRDs are provided in clause 11.1.3.

Decision Model and Notation 1.3 66

7 Relating Decision Logic to Decision Requirements

7.1 Introduction

Clause 6 described how the decision requirements level of a decision model — a DRG represented in one or more DRDs —
may be used to model the structure of an area of decision making. However, the details of how each decision's outcome
is derived from its inputs must be modeled at the decision logic level. This section introduces the principles by which
decision logic may be associated with elements in the DRG. Specific representations of decision logic (decision tables
and FEEL expressions) are then defined in clauses 8, 9 and 10.

The decision logic level of a decision model in DMN consists of one or more value expressions. The elements of decision
logic modeled as value expressions include tabular expressions such as decision tables and invocations, and literal (text)
expressions such as age > 30.

e A literal expression represents decision logic as text that describes how an output value is derived from its input
values. The expression language may, but need not, be formal or executable: examples of literal expressions
include a plain English description of the logic of a decision, a first order logic proposition, a Java computer
program and a PMML document. Clause 10 specifies an executable expression language called FEEL. Clause
9 specifies a subset of FEEL (S-FEEL) that is the default language for literal expressions in DMN decision tables
(clause 8).

e A decision table is a tabular representation of decision logic, based on a discretization of the possible values of
the inputs of a decision, and organized into rules that map discretized input values onto discrete output values
(see clause 8).

e An invocation is a tabular representation of how decision logic that is represented by a business knowledge
model or a decision service is invoked by a decision, or by another business knowledge model. An invocation
may also be represented as a literal expression, but usually the tabular representation will be more
understandable.

Tabular representations of decision logic are called boxed expressions in the remainder of this specification.

All three DMN conformance levels include all the above expressions. At DMN Conformance Level 1, literal expressions
are not interpreted and, therefore, free. At DMN Conformance Level 2, literal expressions are restricted to S-FEEL.
Clause 10 specifies additional boxed expressions available at DMN Conformance Level 3.

Decision logic is added to a decision model by including a value expression component in some of the decision model
elements in the DRG:

e From a decision logic viewpoint, a decision is a piece of logic that defines how a given question is answered,
based on the input data. As a consequence, each decision element in a decision model may include a value
expression that describes how a decision outcome is derived from its required input, possibly invoking a business
knowledge model;

e From a decision logic viewpoint, a business knowledge model is a piece of decision logic that is defined as a
function allowing it to be re-used in multiple decisions. As a consequence, each business knowledge model
element may include a value expression, which is the body of that function.

Another key component of the decision logic level is the variable: Variables are used to store values of Decisions and
InputData for use in value expressions. InformationRequirements specify variables in scope via reference to those
Decisions and InputData, so that value expressions may reference these variables. Variables link information
requirements in the DRG to the value expressions at the decision logic level:

e From a decision logic viewpoint, an information requirement is a requirement for an externally provided value to
be assigned to a free variable in the decision logic, so that a decision can be evaluated. As a consequence, each
information requirement in a decision model points to a Decision or InputData, which in turn defines a
variable that represents the associated data input in the decision’s expression.

Decision Model and Notation 1.3 67

e The variables that are used in the body of the function defined by a business knowledge model element in the
DRG must be bound to the information sources in each of the requiring decisions. As a consequence, each
business knowledge model includes zero or more variables that are the parameters of the function.

The third key element of the decision logic level are the item definitions that describe the types and structures of data
items in a decision model: input data elements in the DRG, and variables and value expressions at the decision logic
level, may reference an associated item definition that describes the type and structure of the data expected as input,
assigned to the variable or resulting from the evaluation of the expression.

Notice that knowledge sources are not represented at the decision logic level: knowledge sources are part of the
documentation of the decision logic, not of the decision logic itself.

The dependencies between decisions, required information sources and business knowledge models, as represented by the
information and knowledge requirements in a DRG, constrain how the value expressions associated with these elements
relate to each other.

As explained above, every decision, input data, and business knowledge model at the DRG level is associated with a
variable used at the decision logic level. Each variable that is referenced by a decision’s expression must be associated
with a required decision, required input data, or required knowledge. Also, each variable associated with the required
decisions, required input data, and required knowledge must be referenced in the decision’s expression.

e If a decision requires another decision, the value expression of the required decision assigns the value to the
variable for use in evaluating the requiring decision. This is the generic mechanism in DMN for composing
decisions at the decision logic level.

e If a decision requires an input data, the value of the variable is assigned the value of the data source attached to
the input data at execution time. This is the generic mechanism in DMN for instantiating the data requirements
for a decision.

The input variables of a decision's decision logic must not be used outside that value expression or its component value
expressions: the decision element defines the lexical scope of the input variables for its decision logic. To avoid name
collisions and ambiguity, the name of a variable must be unique within its scope. When DRG elements are mapped to
FEEL, the name of a variable is the same as the (possibly qualified) name of its associated input data or decision, which
guarantees its uniqueness.

When DRG elements are mapped to FEEL, all the decisions and input data in a DRG define a context, which is the literal
expression that represents the logic associated with the decision element and that represents that scope (see 9.3.2.8). The
information requirement elements in a decision are confext entries in the associated context, where the key is the name of
the variable that the information requirement defines, and where the expression is the context that is associated with the
required decision or input data element that the information requirement references. The value expression that is
associated with the decision as its decision logic is the expression in the context entry that specifies what is the result of
the context.

In the same way, a business knowledge model element defines the lexical scope of its parameters, that is, of the input
variables for its body.

In FEEL, the literal expression and scoping construct that represents the logic associated with a business knowledge
model element is a function definition (see 10.3.2.13), where the formal parameters are the names of the parameters in the
business knowledge model element, and the expression is the value expression that is the body of the business knowledge
model element.

If a business knowledge model element requires one or more other business knowledge models, it must have an explicit
value expression that describes how the required business knowledge models are invoked and their results combined or
otherwise elaborated.

At the decision logic level, a decision invokes a required business knowledge model by evaluating the business
knowledge model's value expression with the parameters bound to its own input value. How this may be achieved
depends on how the decision logic is partitioned between the decision and business knowledge models:

Decision Model and Notation 1.3 68

e If a decision element requires more than one business knowledge element, its value expression must be a literal
expression that specifies how the business knowledge model elements are invoked and how their results are
combined into the decision's outcome.

e If adecision does not require any business knowledge models, its value expression must be a literal expression
or decision table that specifies the entire decision logic for deriving the output from the inputs.

e Similarly, if a decision element requires only one business knowledge model element, but the logic of the
decision elaborates on the logic of its required business knowledge model, the decision element must have a
literal expression that specifies how the business knowledge model's value expression is invoked, and how its
result is elaborated to provide the decision's outcome.

e In all other cases (i.c., when a decision requires exactly one business knowledge model and does not elaborate
the logic), the value expression of a decision element may be a value expression of type invocation. In a value
expression of type invocation, only the bindings of the business knowledge model parameters to the decisions
input data need be specified: the outcome of the decision is the result returned by the business knowledge
model's value expression for the values passed to its parameters.

The binding of a business knowledge model's parameter is a value expression that specifies how the value passed to that
parameter is derived from the values of the input variables of the invoking decision.

7.2 Notation

7.2.1 Expressions

We define a graphical notation for decision logic called boxed expressions. This notation serves to decompose the
decision logic model into small pieces that can be associated with DRG artifacts. The DRD plus the boxed expressions
form a complete, mostly graphical language that completely specifies Decision Models.

In addition to the generic notion of boxed expression, this section specifies two kinds of boxed expressions:

® boxed literal expression,
® boxed invocation.

The boxed expression for a decision table is defined in clause 8. Further types of boxed expressions are defined for FEEL,
in clause 10.

Boxed expressions are defined recursively, i.e., boxed expressions can contain other boxed expressions. The top-level
boxed expression corresponds to the decision logic of a single DRG artifact. This boxed expression SHALL have a name
box that contains the name of the DRG artifact. The name box may be attached in a single box on top, as shown in Figure
7.1:

Name

top-level boxed expression

Figure 7.1: Boxed expression

Alternatively, the name box and expression box can be separated by white space and connected on the left side with a
line, as shown in Figure 7.2:

Decision Model and Notation 1.3 69

Name

top-level boxed expression

Figure 7.2: Boxed expression with separated name and expression boxes

Name is the only visual link defined between DRD elements and boxed expressions. Graphical tools are expected to
support appropriate graphical links, for example, clicking on a decision shape opens a decision table. How the boxed
expression is visually associated with the DRD element is left to the implementation.

7.2.2 Boxed literal expression

In a boxed expression, a literal expression is represented by its text. However, two notational conventions are provided to
improve the readability of boxed literal expressions: typographical string literals and typographical date and time literals.

7.2.2.1 Typographical string literals
A string literal such as "DECLINED" can be represented alternatively as the italicized literal DECLINED. For example,

Figure 7.3 is equivalent to Figure 7.4:

Credit contingency factor table

Credit
U Risk Category Contingency
Factor
HIGH, DECLINE 0.6
MEDIUM 0.7
3 LOW, VERY LOW 0.8
Figure 7.3: Decision table with italicized literals
Credit contingency factor table
Credit
u Risk Category Contingency
Factor
“HIGH”, “DECLINE” 0.6
“MEDIUM” 0.7
“LOW”, “VERY LOW” 0.8

Figure 7.4: Decision table with string literals

To avoid having to discern whether (e.g.,) HIGH, DECLINE is "HIGH," "DECLINE," or "HIGH, DECLINE,"
typographical string literals SHALL be free of commas ("," characters). FEEL typographical string literals SHALL

conform to grammar rule 22 (name).

Decision Model and Notation 1.3

7.2.2.2 Typographical date and time literals

A date, time, date and time, or duration expression such as date("2013-08-09") can be represented alternatively as the
bold italicized literal 2013-08-09. The literal SHALL obey the syntax specified in clauses 10.3.2.3.4, 10.3.2.3.5 and
10.3.2.3.7.

7.2.3 Boxed invocation

An invocation is a container for the parameter bindings that provide the context for the evaluation of the body of a
business knowledge model.

The representation of an invocation is the name of the business knowledge model with the parameters’ bindings explicitly
listed.

As a boxed expression, an invocation is represented by a box containing the name of the business knowledge model to be
invoked, and boxes for a list of bindings, where each binding is represented by two boxed expressions on a row: the box
on the left contains the name of a parameter, and the box on the right contains the binding expression, that is the
expression whose value is assigned to the parameter for the purpose of evaluating the invoked business knowledge model
(see Figure 7.5).

Name

invoked business knowledge model
parameter 1 Binding expression 1
parameter 2 Binding expression 2
parameter n Binding expression n

Figure 7.5: Boxed invocation

The invoked business knowledge model is represented by the name of the business knowledge model. Any other visual
linkage is left to the implementation.

7.3 Metamodel

An important characteristic of decisions and business knowledge models is that they may contain an expression that
describes the logic by which a modeled decision shall be made, or pieces of that logic.

The class Expression is the abstract superclass for all expressions that are used to describe complete or parts of
decision logic in DMN models and that return a single value when interpreted (clause 7.3.1). Here “single value” possibly
includes structured data, such as a decision table with multiple output clauses.

DMN defines three concrete kinds of Expression: LiteralExpression, DecisionTable (see 8) and
Invocation.

An expression may reference variables, such that the value of the expression, when interpreted, depends on the values
assigned to the referenced variables. The class InformationItem is used to model variables in expressions.

The value of an expression, like the value assigned to a variable, may have a structure and a range of allowable values.
The class TtemDefinition is used to model data structures and ranges.

Decision Model and Notation 1.3 71

*YPe [remDefinition [P

0.1 'l—q—ﬁm

+allowedValues |0..1

UnaryTests
+expressionLanguage : URI [0..1]
+text : String
. + -
+bindingFormula +value (0.. item | 0..
T Expression Infermationltem
+caledFunction | tvpeRef : String [0.1] | valueExpression stypeRef : String [0..1]
0.1 0.1
1 Fa
+parameter |1
Invecation LiteralExpression Import
+expressionLanguage | URI [0..1]
+text . String [0..1]

1

*binding |0.. +importedvalues (0.1
e ding ImportedValues
0.1 +expressionLanguage : URI [0..1]
N +importedElemant : String [0..1]

Figure 7.6: Expression class diagram

7.3.1 Expression metamodel

An important characteristic of decisions and business knowledge models, is that they may contain an expression that
describes the logic by which a modeled decision shall be made, or pieces of that logic.

Expression is an abstract specialization of DMNElement, from which it inherits the optional id, description
and label attributes.

An instance of Expression is a component of a Decision element, of a BusinessKnowledgeModel element, or
ofan TtemDefinition element, or it is a component of another instance of Expression, directly or indirectly.

An Expression references zero or more variables implicitly by using their names in its expression text. These
variables, which are instances of InformationTItem, are lexically scoped, depending on the Expression type. If
the Expression is the logic of a Decision, the scope is includes that Decision's requirements. If the
Expression is the body of the encapsulatedLogic of a BusinessKnowledgeModel, the scope includes the

Decision Model and Notation 1.3 72

Alan Fish, 10/10/19
DMN13-140

FunctionDefinition's parameters and the BusinessKnowledgeModel's requirements. If the Expression is
the value of a ContextEntry, the scope includes the previous entries in the Context.An instance of Expression
references an optional t ypeRe £, which points to either a base type in the default typeLanguage, a custom type specified
by an ItemDefinition, or an imported type. The referenced type specifies the Expression's range of possible
values. If an instance of Expression that defines the output of a Decision element includes a typeRef, the
referenced type SHALL be the same as the type of the containing Decision element.

An instance of Expression can be interpreted to derive a single value from the values assigned to its variables. How
the value of an Expression element is derived from the values assigned to its variablesdepends on the concrete kind of
the Expression. The TtemDefinition element specializes NamedElement and it inherits its attributes and
model associations. Table 26 presents the additional attributes and model associations of the TtemDefinition
element.

Expression inherits from the attributes and model associations of DMNElement.

7.3.2 UnaryTests Metamodel

The class UnarvTests is used to model a boolean test where the argument to be tested is implicit or denoted with a ?
and whose value is specified by text in some specified expression language.

UnarvTests is a concrete subclass of Expression.

An instance of UnaryTests inherits an optional t ypeRe f from Expression, which SHALL NOT[= }sed. An
instance of UnarvTests also has an optional text. which is a String, and an optional expressiontarquage,
which is a String that identifies the expression language of the text. If no expressionlLanguage is specified, the
expression language of the text is the expressionLanguadge that is associated with the containing instance of
Definitions. The expressionLanguage SHALL be specified in a URI format. The default expression language is
FEEL. When the expression language is FEEL, the text must conform to grammar rule 15 in section 10.3.1.2.

Table 25 presents additional attributes and model associations of the UnarvTests element.

Table 25: UnaryTests attributes and model associations

Attribute Description
text: string[0..1 The text of this UnaryTests. It SHALL be a valid

expression in the expressionLanguage

expressionLanguage: anyURI[0..1] This attribute identifies the expression language used in this
UnaryTests. This value overrides the expression
language specified for the containing instance of

DecisionRegquirementDiagram. The language SHALL
be specified in a URI format.

B

7.3.3 ItemDefinition metamodel

represented-by-value-expresstons:The inputs and output of decisions, business knowledge models, and decision services,
and the output of input data (all DRGE 1ements) are data items whose value, at the logic level, is assigned to variables or
represented by value expressions.| =

An important characteristic of data items in decision models is their structure. DMN does not require a particular format

Decision Model and Notation 1.3 73

Alan Fish, 10/10/19
DMN13-7

Alan Fish, 10/09/19
DMN13-140

Alan Fish, 10/09/19
Editorial

for this data structure, but it does designate a subset of FEEL as its default.

The class TtemDefinition is used to model the structure and the range of values of the input and the outcome of
decisions.

As a concrete specialization of NamedElement, an instance of TtemDefinition has a name and an optional id
and description. The name of an TtemDefinition element SHALL be distinct from the names of other
ItemDefinitions and Imports within the same model.

The default type language for all elements can be specified in the Definitions element using the t ypeLanguage
attribute. For example, a t ypeLanguage value of http://www.w3.0rg/2001/XMLSchema” indicates that the data
structures used by elements within that Definitions are in the form of XML Schema types. If unspecified, the default
is FEEL.

Notice that the data types that are built-in in the t ypeLanguage that is associated with an instance of Definitions
need not be redefined by TtemDefinition elements contained in that Definitions element: they are considered
imported and can be referenced in DMN elements within the Definitions element.

The type language can be overridden locally using the t ypeLanguage attribute in the ITtemDefinition element.

Notice, also, that the data types and structures that are defined at the top level in a data model that is imported using an
Import element that is associated with an instance of Definitions need not be redefined by ITtemDefinition
elements contained in that Definitions element: they are considered imported and can be referenced in DMN
elements within the Definitions element.

An ITtemDefinition element MAY have a t ypeRef, which is a string that references, as a qualified name, either an
ItemDefinition in the current instance of Definitions or a built-in type in the specified typeLanguage ora

type defined in an imported DMN, XSD, or other document. In the latter case, the external document SHALL be

imported in the Definitions element that contains the instance of ITtemDefinition, using an Import element
specifying both the namespace value and its name when used a qualifier. For example, in the case of data structures
contributed by an XML schema, an Import would be used to specify the file location of that schema, and the typeRef
attribute would reference the type or element definition in the imported schema. If the type language is FEEL the built-in
types are the FEEL built-in data types: number, string, boolean, days and time duration, years and months duration, E
time, date and time E typeRef referencing a built-in type SHALL omit the prefix.

An ITtemDefinition element may restrict the values that are allowed from typeRef, using the allowedValues
attribute. The allowedValues are an instance of unaryTests that specifies the allowed values or ranges of allowed
values within the domain of the t ypeRef. The type of the allowed values SHALL be consistent with the containing
ItemDefinition element. If an TtemDefinition element contains one or more allowedValues, the
allowedValues specifies the complete range of values that this TtemDefinition represents. If an
ItemDefinition element does not contain allowedValues, its range of allowed values is the full range of the
referenced typeRef. In cases where the values that an TtemDefinition element represents are collections of values
in the allowed range, the multiplicity can be projected into the attribute 1 sCollection. The default value for this
attribute is false.

An alternative way to define an instance of ITtemDefinition is as a composition of ITtemDefinition elements.
An instance of TtemDefinition may contain zero or more i temComponent, which are themselves
ItemDefinitions. Each itemComponent in turn may be defined by either a t ypeRef and allowedValues or
anested i temComponent. In this way, complex types may be defined within DMN. The name of an
itemComponent (nested ItemDefinition) must be unique within its containing TtemDefinition or
itemComponent.

E]

Decision Model and Notation 1.3 74

Alan Fish, 10/10/19
DMN13-7

Alan Fish, 06/25/19
DMN13-144

Alan Fish, 04/30/19
DMN13-66

defines the signature of a function: the parameters and the output of the function. An instance of TtemDefinition

may contain one FunctionItem. A FunctionItem may contain zero or more parameters defined as

InformationItems and one output type defined as a tvpeRef. The names of the parameters of a FunctionItem

are unique.

An ItemDefinition element SHALL be defined using only one of the alternative ways:

e reference to a built-in or imported typeRef, possibly restricted with allowedValues:

e composition of ItemDefinition elements

» function signature element. | =

An alternative way to define an instance of TtemDefinition is by specifying a FunctionItem element, which

The TtemDefinition element specializes NamedElement and it inherits its attributes and model associations.
Table 26 presents the additional attributes and model associations of the TtemDefinition element.

Table 26: ItemDefinition attributes and model associations

Attribute Description

typeRef: String [1] This attribute identifies by namespace-prefixed name the base type
of this ITtemDefinition.

typeLanguage: String [0..1] This attribute identifies the type language used to specify the base
type of this TtemDefinition. This value overrides the type
language specified in the Definitions element. The language
SHALL be specified in a URI format.

allowedValues: UnaryTests [0..1] This attribute lists the possible values or ranges of values in the
base type that are allowed in this TtemDefinition.

\ itemComponent: TtemDefinition_ [*] This attribute defines zero or more nested ItemDefinitions that
compose this TtemDefinition.

IsCollection: Boolean Setting this flag to true indicates that the actual values defined by
this ItemDefinition are collections of allowed values. The default
is false.

functionltem: FunctionItem [0..1] This attribute describes an optional FunctionItem that compose
this TtemDefinition. =

‘ Table 27: FunctionItem attributes and model associations

\ Attribute Description

| | outputTypeRef: String [0..1] Reference to output type of function

\ parameters: Informationltem [0..*] Function parameters as Informationltems

Z

Decision Model and Notation 1.3 75

Alan Fish, 10/10/19
DMN13-7

Alan Fish, 10/10/19
DMN13-7

Alan Fish, 10/10/19
DMN13-7

pkg

DMNElement

i

NamedElement

+name : String

P

Informationltem

+typeRef : String[0..1]

Functionitem + parameters

ltemDefinition l‘ + functionltem
T f . Stri
+typeLanguage : URI[0..1] - +outputTypeRef : String[1] 0.3

+typeRef : Siring[0..1]
+i1sCollection : Boolean[0..1] = false

itemCompaonent

Y 0.1

0.1 | +allowedValues

UnaryTests

+ expressionLanguage : URI[0..1]
+ text - String

Figure 7.7: ItemDefinition class diagram

7.3.4 Informationltem metamodel
The class InformationItem is used to model variables at the decision logic level in decision models.

InformationItem is a concrete subclass of NamedElement, from which it inherits the id, and optional name,
description, and label attributes, except that an InformationItem element SHALL have a name attribute,
which is the name that is used to represent it in other Expression elements. The name of an InformationItem
element SHALL be unique within its scope.

Variables represent values that result from a decision, are assigned to input data by an external data source, or are passed
to a module of decision logic that is defined as a function (and that is represented by a business knowledge model
element). In the first or second case, a variable may be referenced by other dependent decisions by means of their
information requirements. In the third case, a variable is one of the parameters of the function that is the realization, at the
decision logic level, of a business knowledge model element.

A variable representing an instance of Decision or InputData referenced by an InformationRequirement
SHALL be referenced by the value expression of the decision logic in the Decision element that contains the
InformationRequirement element. A parameter in an instance of BusinessKnowledgeModel SHALL be a
variable in the value expression of that BusinessKnowledgeModel element.

An InformationItem element contained in a Decision is assigned the value of the Decision's value
expression.

e An InformationItem element thatis a parameter in a FunctionDefinition is assigned a value by a
Binding element as part of an instance of Invocation.

Decision Model and Notation 1.3 76

Alan Fish, 10/10/19
DMN13-7
To be replaced?

e An InformationItem element contained in an InputData is assigned a value by an external data source
that is attached at runtime.

e AnInformationItem element contained in a ContextEntry is assigned a value by the
ContextEntry's value expression.

In any case, the datatype indicated by the t ypeRef that is associated with an instance of InformationItem SHALL
be compatible with the datatype that is associated with the DMN model element from which it takes its value.
InformationItem inherits all of the attributes and model associations of NamedElement. Table 28 presents the
additional attributes and model associations of the InformationItem element.

Table 28: InformationItem attributes and model associations

Attribute Description

IvalueExpression: Expression [0..1] The Expression whose value is assigned to this
InformationItem. This is a derived attribute.

typeRef: String [1] Qualified name of the type of this InformationItem.

7.3.5 Literal expression metamodel

The class LiteralExpression is used to model a value expression whose value is specified by text in some specified
expression language.

LiteralExpression is a concrete subclass of Expression, from which it inherits the 1d and t ypeRef attributes.

An instance of LiteralExpression has an optional text, which is a String, and an optional
expressionLanguage, which is a String that identifies the expression language of the text. If no
expressionLanguage is specified, the expression language of the text is the expressionLanguage that is
associated with the containing instance of Definitions. The expressionLanguage SHALL be specified in a URI
format. The default expression language is FEEL.

As a subclass of Expression, each instance of LiteralExpression has avalue. The text in an instance of
LiteralExpression determines its value, according to the semantics of the LiteralExpression’s
expressionLanguage. The semantics of DMN sion models as described in this specification applies only
if the text of all the instances of LiteralExpressio he model are valid expressions in their associated
expression language.

An instance of LiteralExpression may include importedValues, which is an instance of a subclass Import
that identifies where the text of the LiteralExpression is located. importedValues is an expression that selects
text from an imported document. An instance of LiteralExpression SHALL NOT have both a text and
importedvValues. The importType of the importedvalues identifies the type of document containing the
imported text and SHALL be consistent with the expressionLanguage of the LiteralExpression element.
The expressionLanguage of the importedvalues element identifies how the imported text is selected from the
imported document. For example, if the importType indicates an XML document, the expressionLanguage of
importedvValues could be XPATH 2.0.

LiteralExpression inherits of all the attributes and model associations of Expression. Table 29 presents the
additional attributes and model associations of the LiteralExpression element.

Decision Model and Notation 1.3 77

Alan Fish, 10/23/19
Editorial

Table 29: LiteralExpression attributes and model associations

Attribute Description

text: string [0..1] The text of this LiteralExpression. It SHALL be a valid expression
in the expressionLanguage.

expressionLanguage: anyURI [0..1] This attribute identifies the expression language used in this
LiteralExpression. This value overrides the expression language
specified for the containing instance of
DecisionRequirementDiagram. The language SHALL be specified
in a URI format.

importedValues: Importedvalues [0..1] The instance of Importedvalues that specifies where the text of this
LiteralExpression is located.

7.3.6 Invocation metamodel

Invocation is a mechanism that permits the evaluation of one value expression — the invoked expression — inside another
value expression — the invoking expression — by binding locally the input variables of the invoked expression to values
inside the invoking expression. In an invocation, the input variables of the invoked expression are usually called:
parameters. Invocation permits the same value expression to be re-used in multiple expressions, without having to
duplicate it as a sub-expression in all the using expressions.

The class Invocation is used to model invocations as a kind of Expression: Invocation is a concrete
specialization of Expression.

An instance of Invocation is made of zero or more binding, which are instances of Binding, and model how the
bindingFormulas are bound to the formalParameters of the invoked function. The formalParameters of a
FunctionDefinition are InformationItems and the parameters of the Bindingsare InformationItems.
The binding is by matching the InformationItem names.

An Invocation contains a calledFunction, an Expression, which must evaluate to a function. Most
commonly, itisa LiteralExpression naming a BusinessKnowledgeModel.

The value of an instance of Invocation is the value of the associated calledFunction's body, with its
formalParameters assigned values at runtime per the bindings in the Invocation.

Invocation MAY be used to model invocations in decision models, when a Decision element has exactly one
knowledgeRequirement element, and when the decisionLogic in the Decision element consists only in
invoking the BusinessKnowledgeModel element that is referenced by that requiredKnowledge and a more
complex value expression is not required.

Using Invocation instances as the decisionLogic in Decision elements permits the re-use of the
encapsulatedLogic of a BusinessKnowledgeModel as the logic for any instance of Decision that requires
that BusinessKnowledgeModel, where each requiring Decision element specifies its own bindings for the
encapsulatedLogic's parameters.

The calledFunction that is associated with the Invocation element SHALL BE the encapsultedLogic of
the BusinessKnowledgeModel element that is required by the Decision element that contains the Invocation.
The Invocation element SHALL have exactly one binding for each parameter in the
BusinessKnowledgeModel's encapsulatedLogic.

Invocation inherits of all the attributes and model associations of Expression. Table 30 presents the additional
attributes and model associations of the Invocation element.

Decision Model and Notation 1.3 78

Table 30: Invocation attributes and model associations

Attribute Description

calledFunction: Expression [1] An expression whose value is a function.

binding: Binding [*] This attribute lists the instances of Binding used to bind the
formalParameters of the calledFunction in this Invocation.

7.3.7 Binding metamodel

The class Binding is used to model, in an Invocation element, the binding of the calledFunction's
formalParameters to values.

A Binding is made of one bindingFormula, which is an Expression, and of one parameter, which is an
InformationItem.

The parameter names in the Binding elements SHALL be a subset of the formalParameters of the
calledFunction.

When the Invocation element is executed, each InformationItem element that is referenced as a parameter
by abinding inthe Invocation element is assigned, at runtime, the value of the bindingFormula.

Table 31 presents the attributes and model associations of the Binding element.

Table 31: Binding attributes and model associations

Attribute Description

parameter: InformationItem The InformationItem on which the calledFunction of the owning
instance of Invocation depends that is bound by this Binding.

bindingFormula: Expression [0..1] The instance of Expression to which the parameter in this Binding is
bound when the owning instance of Invocation is evaluated.

Decision Model and Notation 1.3 79

Decision Model and Notation 1.3

This page intentionally left blank.

80

8 Decision Table

8.1 Introduction

One of the ways to express the decision logic corresponding to the DRD decision artifact is as a decision table. A decision
table is a tabular representation of a set of related input and output expressions, organized into rules indicating which
output entry applies to a specific set of input entries. The decision table contains all (and only) the inputs required to
determine the output. Moreover, a complete table contains all possible combinations of input values (all the rules).

Decision tables and decision table hierarchies have a proven track record in decision logic representation. It is one of the
purposes of DMN to standardize different forms and types of decision tables.

A decision table consists of:

¢ An information item name: the name of an Informationltem, if any, for which the decision table is its value
expression. This will usually be the name of the Decision or Business Knowledge Model for which the decision
table provides the decision logic.

e A list of input clauses (zero or more). Each input clause is made of an input expression and optional allowed
values for the input entries that correspond to the clause. The input entries are contained in the rules, and the i"
input entry corresponds to the i input clause.

e A list of output clauses (one or more). Each output clause is made of a name and optional allowed values for the
output entries that correspond to the clause. The output entries are contained in the rules, and the ith output entry
corresponds to the ith output clause. A single output clause has no name. Two or more output clauses describe a
decision table that returns a context for each hit with an entry for each output clause. Each of the multiple output
clauses SHALL be named.

e A set of outputs (one or more). A single output has no name, only a value. Two or more outputs are called
output components. Each output component SHALL be named. Each output (component) SHALL specify an
output entry for each rule. The specification of output component name (if multiple outputs) and all output
entries is referred to as an output clause.

e A list of annotation clauses (zero or more). Each annotation clause is made of a name. Each annotation SHALL
be named as part of a rule annotation clause. The annotation entries are contained in the rules, and the i"
annotation entry corresponds to the i" annotation clause.

e A list of rules (one or more) in rows or columns of the table (depending on orientation), where each rule is
composed of the specific input entries, output entries and optional rule annotations of the table row (or column).
If the rules are expressed as rows, the columns are clauses, and vice versa.

Decision Model and Notation 1.3 81

Information item name

Rules in columns

Input entry
Input expression \ Discount /
[~ Customer | Business, Private Business Prr‘vée ¥ Irrelevant
Inputs and outputs |3 [_Order size <10, >=10 <10 >=10 -~
in rows > Discount 0.05, 0.10, 0.15 0.10 0.15 0.05 Qutput entry
Description I \ Desc1 Desc 2 Desc 3
Reference Ref 4 Ref 4 Ref 5
Output label A / \ f j ‘\ ;C
/ { \ —~ Rule number
: : Optional default
Optional annotation output entry Annotation entry
Hit policy indicator Optional allowed
values

Figure 8.1: Decision table example (vertical orientation: rules as columns)

Input expression Inputs and outputs Output label Optional default
Information item name In columns / output entry
Optional allowed values
Optional annotations
Hit policy indicator N\ Discount l \ | l l
N U Customer Order size DIS unt Description | Reference
7
Business, Private <10, »>=10 0. 05 0.10,0.15
[| <10 0.10 Desc 1 Ref 4
| Business /
0 - —_—] -~ _1n nAar MaAama D PAEf A
Information tem name I | Input expression I Inputs and outputs Output label I
in columns /
it ndioaor | Adiustments /|| / .
-~ U / Adjustments
Customer | OrderSize | Discount Shipping \\l Output componentnames ‘
Business, Private <10, >=10 .05, .10, .15 air, ground N
— <10 10 air \I Optional allowed values |
i - Business
BB 2 >=10 .15 ground \ Onional debult
= 3 Privatey - .05 air \ il

\ \\ \ output entry

Rule numbers Input entry Irrelevant Outputentry

The decision table shows the rules in a shorthand notation by arranging the entries in table cells. This shorthand notation
shows all inputs in the same order in every rule and therefore has a number of readability and verification advantages.

For example:

Customer OrderSize Discount

Business <10 0.10

reads as:

If Customer = “Business” and OrderSize < 10 then Discount =0.10

In general, this is expressed as:

input expression 1 input expression 2 Output label

input entry a input entry b output entry c

The three highlighted cells in the decision table fragment above represent the following rule:
If the value of input expression 1 satisfies input entry a
and the value of input expression 2 satisfies input entry b
then the rule matches and the result of the decision table is output entry c.

An input expression value satisfies an input entry if the value is equal to the input entry, or belongs to the list of values
indicated by the input entry (e.g., a list or a range), or one of the expressions in the input entry evaluates to true. For the
complete specification of the input entry satisfaction conditions, please refer to section 8.3.3. If the input entry is ‘-’
(meaning irrelevant), every value of the input expression satisfies the input entry and that particular input is irrelevant in
the specified rule.

A rule matches if the value of every input expression satisfies the corresponding input entry. If there are no input entries,
any rule matches.

The list of rules expresses the logic of the decision. For a given set of input values, the matching rule (or rules) indicate
the resulting value for the output name. If rules overlap, multiple rules can match and a /it policy indicates how to handle
the multiple matches.

If two input entries of the same input expression share no values, the entries (cells) are called disjoint. If there is an
intersection, the entries are called overlapping (or even equal). ‘Irrelevant’ (‘-”) overlaps with any input entry of the input
expression.

Two rules are overlapping if all corresponding input entries are overlapping. A specific configuration of input data may
then match the two rules.

Two rules are disjoint (non-overlapping) if at least one pair of corresponding input expressions is disjoint. No specific
configuration of input data will match the two rules.

If tables are allowed to contain overlapping rules, the table hit policy indicates how overlapping rules have to be handled
and which is the resulting value(s) for the output name, in order to avoid inconsistency.

8.2 Notation

This section builds on the generic notation for decision logic and boxed expressions defined in clause 7.2.

A decision table representation standardizes:

Decision Model and Notation 1.3 83

e The orientation (rules as rows, columns or crosstab), as shown by the table.

e Placement of inputs, outputs and (optional) allowed values in standard locations on a grid of cells. Each input
expression is optionally associated with unary tests restricting the allowed input values. In this text the optional
cells with allowed values are indicated in . Each output (component) is optionally associated with allowed
values. In this text the optional allowed output values are indicated in

e Line style and optional use of color.
e The contents of specific rule input and output entry cells.
e The hit policy, indicating how to interpret overlapping input combinations.

e Placement of information item name, hit policy (H) and rule numbers as indicated in Figure 8.5, Figure 8.7 and
Figure 8.9 Rule numbers are consecutive natural numbers starting at 1. Rule numbering is required for tables
with hit indicator F (first) or R (rule order), because the meaning depends on rule sequence. Crosstab tables have
no rule numbers. Rule numbering is optional for other table types.

Input expressions, input values, output values, input entries and output entries can be any text (e.g. natural language,
formal language, pseudo-code). Implementations claiming level 2 or 3 conformance SHALL support (S-)FEEL syntax.
Implementations claiming level 1 conformance are not required to interpret the expressions. To avoid misinterpretation
(e.g., when expressions are not meant to be valid (S-)FEEL but may conflict with the look and feel of (S-)FEEL syntax),
conformant implementations SHOULD indicate when the input expression is not meant to be interpreted by using the
URI: "http://www.omg.org/spec/ DMN/uninterpreted/20140801".

8.2.1 Line style and color

Line style is normative. There is a double line between the input clauses and output clauses, continuing between the input
entries and the output entries. There is also a double line between the output clauses and the annotation clauses,
continuing between the output entries and the annotation entries. These two double lines are parallel to each other. There
is a third double line, that intersects at right angles with the previous two, between input clauses and the input entries,
continuing between the output clauses and the output entries, and continuing between the annotation clauses and the
annotation entries. All other cells are separated by a single line.

Color is suggested, but does not influence the meaning. It is considered good practice to use different colors for the input
clauses, the output clauses, and the annotation clauses, and another (or no) color for the input, output, and annotation
entries.

8.2.2 Table orientation

Depending on size, a decision table can be presented horizontally (rules as rows), vertically (rules as columns), or
crosstab (rules composed from two input dimensions). Crosstab tables can only have the default hit policy (see later).

Decision table inputs and outputs should not be mixed. In a horizontal table, all input columns SHALL be represented on
the left of all output columns. In a vertical table, all the input rows SHALL be represented above all output rows. In a
crosstab, all the output cells SHALL be in the bottom-right part of the table.

The table SHALL be arranged in one of the following ways (see Figure 8.5, Figure 8.7, Figure 8.9). Cells indicated in
are optional.

The input cell entry ‘-” means ‘irrelevant’. HC is a placeholder for hit policy indicator (e.g., U, A, F, ...).

information item name

H input expression 1 input expression 2 Output label

Decision Model and Notation 1.3 84

input entry 2.1

output entry 1.1

input entry 1.1

input entry 2.2

output entry 1.2

3

input entry 1.2

output entry 1.3

Figure 8.5: Rules as rows — schematic layout

Discount
U Customer OrderSize Delivery Discount
Business, Private,
Government <10, >=10 sameday, slow 0, 0.05, 0.10, 0.15
1) <10 - 0.05
Business
2 >=10 - 0.10
3 . sameday 0
Private -
4 slow 0.05
5 Government - - 0.15
Figure 8.6: Rules as rows — example
information item name
. . . input entry
input expression 1 input entry 1.1 12
. . input entry input entry
input expression 2 21 29
output entry | output entry | output entry
Output label 11 12 13
H 1 2 3
Figure 8.7: Rules as columns — schematic layout
Discount
Customer Business, Private, Business Private Government
Government
Ordersize <10, >=10 <10 >=10 - -
Delivery sameday, slow - - sameday slow -
Discount 0,0.05,0.10,0.15 |[0.05 | 0.10 0 0.05 0.15
U 1 2 3 4 5

Figure 8.8: Rules as columns — example

Decision Model and Notation 1.3

information item name

input expression 1
Output label input entry input entry

1.1 1.2
input entry || output entry | output entry

input expression 2.1 1.1 1.3
2 input entry || output entry | output entry

2.2 1.2 1.4

Figure 8.9: Rules as crosstab - schematic layout (optional input and output values not shown)

Discount
DI ; Customer
iscoun
Business Private Government
) <10 0.05 0 0.15
Ordersize
=10 0.10 0 0.15

Figure 8.10: Rules as crosstab - simplified example with only two inputs

Discount
Customer, Delivery
Discount Business Private Government
- sameday slow -
<10 0.05 0 0.05 0.15
Ordersize
>=10 0.10 0 0.05 0.15

Figure 8.11: Rules as crosstab - example with three inputs

Crosstab tables with more than two inputs are possible (as shown in Figure 8.11).

8.2.3 Input expressions

Input expressions are usually simple, for example, a name (e.g., CustomerStatus) or a test (e.g. Age<25).

The order of input expressions is not related to any execution order in implementation.

Decision Model and Notation 1.3

86

8.2.4 Input values

Input expressions may be expected to result in a limited number or a limited range of values. It is important to model
these expected input values, because a decision table will be considered complete if its rules cover all combinations of
expected input values for all input expressions.

Regardless of how the expected input values are modeled, input values SHOULD be exclusive and complete. Exclusive
means that input values are disjoint. Complete means that all relevant input values from the domain are present.

For example, the following two input value ranges overlap: <5, <10. The following two ranges are incomplete: <5, >5.

The list of input values is optional. If provided, it is a list of unary tests that must be satisfied by the corresponding input.

8.2.5 Information Item names, output labels, and output component names
A decision table with multiple output components SHALL specify a name for each output component.

A decision table that is the value expression of an Informationltem (e.g., a Decision's logic or a boxed Invocation's
binding formula) SHALL specify the name of the Informationltem as its Information Item name. A decision table that is
not contained in another boxed expression shall place the Information Item name in a name box just above and adjoining
the table.

A decision table that is contained in another boxed expression may use the containing expression for its Information Item
name. For example, the Information Item name for a decision table bound to a function parameter is the name of the
function parameter. Or, to save space, the Information Item name box may be omitted and the Output label used instead.

Output values
The output entries of a decision table are often drawn from a list of output values.
The list of output values is optional. If provided, it is a list restricting output entries to the given list of values.

When the hit policy is P (priority), meaning that multiple rules can match, but only one hit should be returned, the
ordering of the list of output values is used to specify the (decreasing) priority.

The ordering of the list of output values is also used when the hit policy is output order.

8.2.6 Multiple outputs

The decision table can show a compound output (see Figure 8.12, Figure 8.13, and Figure 8.14).

information item name

H output label

input expression 1

input expression 2

output component 1

output component 2

input entry 1a

input entry 2a

output entry 1.1

output entry 2.1

input entry 2b

output entry 1.2

output entry 2.2

input entry 1b

output entry 1.3

output entry 2.3

Figure 8.12: Horizontal table with multiple output components

Decision Model and Notation 1.3

87

information item name

input expression 1 input entry 1a input entry 1b

input expression 2 input entry 2a input entry 2b -
output
component output entry 1.1 output entry 1.2 output entry 1.3
output 1
label output
component output entry 2.1 output entry 2.2 output entry 2.3
2
H 1 2 3

Figure 8.13: Vertical table with multiple output components

information item name

output label
output component 1,

input expression 1

output component 2

input entry 1a

input entry 1b

input entry output entry 1.1, output entry 1.3

input expression 2a output entry 2.1 output entry 2.3
2 input entry output entry 1.2, output entry 1.4,

2h output entry 2.2 output entry 2.4

Figure 8.14: Crosstab with multiple output components

8.2.7 Input entries

Rule input entries are unary tests (grammar rule 15).
A dash symbol (‘-”) can be used to mean any input value, i.e., the input is irrelevant for the containing rule.

The input entries in a unary test SHOULD be -’ or a subset of the input values specified. For example, if the input values
for input ‘Age’ are specified as [0..120], then an input entry of <0 SHOULD be reported as invalid.

Tables containing at least one ‘-’ input entry are called contracted tables. The others are called expanded.

Tables where every input entry is true, false, or -’ are historically called /imited-entry tables, but there is no need to
maintain this restriction.

Evaluation of the input expressions in a decision table does not produce side-effects that influence the evaluation of other
input expressions. This means that evaluating an expression or executing a rule should not change the evaluation of other
expressions or rules of the same table. This is particularly important in first hit tables where the rules are evaluated in a
predefined sequence: evaluating or executing a rule should not influence other rules.

8.2.8 Merged input entry cells

Adjacent input entry cells from different rules, with the same content and same (or no) prior cells can be merged, as
shown in Figure 8.15 and Figure 8.16. Rule output cells cannot be merged (except in crosstabs).

Decision Model and Notation 1.3 88

information item name

H input expression 1 input expression 2 Output label

1 . input entry 2a output entry 1.1
input entry 1a -

2 input entry 2b output entry 1.2

3 input entry 1b - output entry 1.3

Figure 8.15: Merged rule input cells allowed

information item name

H input expression 1 input expression 2 Output label

1 . input entry 2a output entry 1.1
input entry la

2 output entry 1.2

3 output entry 1.3
input entry 1b P Y

4 input entry 2a output entry 1.4

Figure 8.16: Merged rule input cells not allowed

8.2.9 Output entry

A rule output entry is an expression.

Rule output cells cannot be merged (except in crosstabs, where adjacent output cells with the same content can be
merged).
Shorthand notation

In vertical (rules as columns) tables with a single output name (equal to the information item name), a shorthand notation
may be used to indicate: output value applies (‘X’) or does not apply (‘-’), as is common practice in decision tables.

Because there can be only one output entry for an output name, every rule must indicate no more than one ‘X’. The other
output entries must contain ‘-’.

The table in Figure 8.17 is shorthand notation for the table in Figure 8.18. It is called shorthand , because the output
entries need not be (re-)written in every column, but are indicated with a one-character notation (‘X or ‘-’), thereby

saving space in vertical tables, which tend to expand in width as the number of rules increases. The output values are
written only once, before the rules, in the output expression part.

If an information item name is provided, and there is only one output name (which has to be equal to the information item
name), the output name is optional.

Decision Model and Notation 1.3 89

Applicant Risk Rating

Applicant Age <25 [25..60] > 60
Medical History good | bad - good | bad
Low X - - - -
Medium - X X X -
High - - - - X
V) 1 2 3 4 5

Figure 8.17: Shorthand notation for vertical tables (rules as columns)

Applicant Risk Rating

Applicant Age <25 [25..60] > 60

Medical History good bad - good bad

Applicant Risk Rating Low Medium Medium Medium High
U 1 2 3 4 5

Figure 8.18: Full notation for vertical tables (rules as columns)

8.2.10 Hit policy

A decision table normally has several rules. As a default, rules do not overlap. If rules overlap, meaning that more than
one rule may match a given set of input values, the hit policy indicator is required in order to recognize the table type and
unambiguously understand the decision logic. The hit policy can be used to check correctness at design-time.

The hit policy specifies what the result of the decision table is in cases of overlapping rules, i.e., when more than one rule
matches the input data. For clarity, the hit policy is summarized using a single character in a particular decision table cell.
In horizontal tables this is the top-left cell (Figure 8.2) and in vertical tables this is the bottom-left cell (Figure 8.1). The
character is the initial letter of the defined hit policy (Unique, Any, Priority, First, Collect, Output order or Rule order).
Crosstab tables are always Unique and need no indicator.

The hit policy SHALL default to Unique, in which case the hit indicator is optional. Decision tables with the Unique hit
policy SHALL NOT contain overlapping rules.

Tools may support only a nonempty subset of hit policies, but the table type SHALL be clear and therefore the hit policy
indication is mandatory, except for the default unique tables. Unique tables SHALL always be supported.

Single and multiple hit tables

A single hit table shall return the output of one rule only; a multiple hit table may return the output of multiple rules (or a
function of the outputs, e.g., sum of values). If rules are allowed to overlap, the hit policy indicates how overlapping rules
have to be interpreted.

The initial letter for hit policy also identifies if a table is single hit or multiple hit.

A single hit table may or may not contain overlapping rules, but returns the output of one rule only. In case of overlapping
rules, the hit policy indicates which of the matching rules to select. Some restrictions apply to tables with compound
outputs.

Regardless of whether a single or multiple hit policy is used, some columns in a decision table may be designated as rule
annotations. Rule Annotations contain text that is not returned as part of the expression results, and they are ignored for
purposes of the hit policy validations described below. Although there is no standard mechanism to access the annotations

Decision Model and Notation 1.3 90

of the matched rules in a decision table at execution time, implementations may use the annotations for auditing,
debugging, logging, documentation, analytics, consumption by down-stream systems, or for other purposes.

Single hit policies for single output decision tables are:

1. Unique: no overlap is possible and all rules are disjoint. Only a single rule can be matched. This is the default.

2. Any: there may be overlap, but all the matching rules show equal output entries for each output (ignoring rule
annotations), so any match can be used. If the output entries are non-equal (ignoring rule annotations), the hit
policy is incorrect and the result is undefined.

3. Priority: multiple rules can match, with different output entries. This policy returns the matching rule with the highest
output priority. Output priorities are specified in the ordered list of output values, in decreasing order of priority.
Note that priorities are independent from rule sequence.

4. First: multiple (overlapping) rules can match, with different output entries. The first hit by rule order is returned (and
evaluation can halt). This is still a common usage, because it resolves inconsistencies by forcing the first hit.
However, first hit tables are not considered good practice because they do not offer a clear overview of the
decision logic. It is important to distinguish this type of table from others because the meaning depends on the
order of the rules. The last rule is often the catch-remainder. Because of this order, the table is hard to validate
manually and therefore has to be used with care.

A multiple hit table may return output entries from multiple rules. The result will be a list of rule outputs or a simple
function of the outputs.

Multiple hit policies for single output decision tables can be:

5. Output order: returns all hits in decreasing output priority order. Output priorities are specified in the ordered list of
output values in decreasing order of priority.

6. Rule order: returns all hits in rule order. Note: the meaning may depend on the sequence of the rules.

7. Collect: returns all hits in arbitrary order. An operator (‘+’, *<’, *>’, ‘#’) can be added to apply a simple function to
the outputs. If no operator is present, the result is the list of all the output entries.

Collect operators are:

a) + (sum): the result of the decision table is the sum of all the outputs.

b) < (min): the result of the decision table is the smallest value of all the outputs.

¢) > (max): the result of the decision table is the largest value of all the outputs.

d) # (count): the result of the decision table is the number of outputs.

Other policies, such as more complex manipulations on the outputs, can be performed by post-processing the output
list (outside the decision table).

Decision tables with compound outputs support only the following hit policies: Unique, Any, Priority, First, Output order,
Rule order and Collect without operator, because the collect operator is undefined over multiple outputs. This restriction
ignores rule annotations of which there may be multiple regardless of the hit policy specified.

For the Priority and Output order hit policies, priority is decided in compound output tables over all the outputs for which
output values have been provided (ignoring rule annotations). The priority for each output is specified in the ordered list
of output values in decreasing order of priority, and the overall priority is established by considering the ordered outputs
from left to right in horizontal tables (i.c., columns to the left take precedence over columns to the right), or from top to
bottom in vertical tables. Outputs for which no output values are provided are not taken into account in the ordering,
although their output entries are included in the ordered compound output.

So, for example, if called with Age = 17, Risk category = “HIGH” and Debt review = true, the Routing rules table in
Figure 8.19 would return the outputs of all four rules, in the order 2, 4, 3, 1.

Decision Model and Notation 1.3 91

Routing rules
0] Age Risk Debt Routing Review Reason
category review level
LOW, DECLINE, LEVEL 2,
MEDIUM, REFER, LEVEL 1,
HIGH ACCEPT NONE
1 - - - ACCEPT NONE Acceptable
2 <18 - - DECLINE NONE Applicant too young
3 - HIGH - REFER LEVEL 1 High risk application
4 - - true REFER LEVEL 2 | Applicant under debt review

Figure 8.19: Output order with compound output

Note 1
Crosstab tables are unique and complete by definition and therefore do not need a hit policy.

Note 2

The sequence of the rules in a decision table does not influence the meaning, except in First tables (single hit) and

Rule order tables (multiple hit). These tables should be used with care.

8.2.11 Default output values

Tables may specify a default output. The default value is underlined in the list of output values.

Decision Model and Notation 1.3

92

8.3 Metamodel

DMNElameant

+outputValues
+allowedvalues sinputvalues
UnaryTests P InputClause
0.1 0.1
+inputEntry
0.+ {ordered +input|0..* {ordered}
+inputExpression
LiteralExpression
+defaultOutputEntry 0.1 #uleinput arniuie
0. +outputEntry +ruleCutput
+."ULItDLItDEﬂI'Ii‘tiUI'I ltemDefinition 1.*
0.1 P tordered) +rule |0.* {ordered} +ruleAnnotation
- +value Fr
0.* 0..* | +annotationEntry
RuleAnnotation
l +text [0..1]
OutputClause DecisionTable
String (0.1 +hitPolicy : HitPolicy [1] = UNIQUE +decisionTable
+nan‘na. 1 _”5'19.[“D] 1 +putput +aggregation : BuiltinAggregator [0..1]
+ypeRef: String [0..1] 5 +preferredOrientation : DecizsionTableQrientation [0..1]
1. ;
{ordered} +outputLabel : String [0..1] +annotation |RuleAnnotationClause
0% {ordered; +name : String [1]

senumerations
HitPolicy
UNIQUE wenumerations
FIRST wenumerations BuiltinAgaregator
PRIORTY _ ientati
ANY DecisionTableOrientation UM
COLLECT Rule-as-Row COUNT
RULE ORDER Rule-as-Column MIN
OUTPUT ORDER CrossTable MAX

Figure 8.20: DecisionTable class diagram

8.3.1 Decision Table metamodel
The class DecisionTable is used to model a decision table.
DecisionTable is a concrete specialization of Expression.

An instance of DecisionTable contains a list of rules which are instances of DecisionRule, a list of inputs which
are instances of InputClause, a list of outputs which are instances of OutputClause, and a list of annotations
which are instances of RuleAnnotationClause.

It has a preferredOrientation, which SHALL be one of the enumerated DecisionTableOrientation:
Rule-as-Row, Rule-as-Column or CrossTable. An instance of DecisionTable SHOULD BE represented
as specified by its preferredOrientation, as defined in clause 8.2.2.

An instance of DecisionTable has an associated hitPolicy, which SHALL be one of the enumerated
HitPolicy: UNIQUE, FIRST, PRIORITY, ANY, COLLECT, RULE ORDER, OUTPUT ORDER. The default value for
the hitPolicy attribute is: UNIQUE. In the diagrammatic representation of an instance of DecisionTable, the
hitPolicy is represented as specified in clause 8.2.10.

Decision Model and Notation 1.3 93

The semantics that is associated with an instance of DecisionTable depends on its associated hitPolicy, as
specified below and in clause 8.2.10. The hitPolicy attribute of an instance of DecisionTable is represented as
specified in clause 8.2.10.

If the hitPolicy associated with an instance of DecisionTable is FIRST or RULE ORDER, the rules that are
associated with the DecisionTable SHALL be ordered. The ordering is represented by the explicit numbering of
the rules in the diagrammatic representation of the DecisionTable.

If the hitPolicy associated with an instance of DecisionTable is PRIORITY or OUTPUT ORDER, the
outputValues determine the result as specified in clause 8.2.10.

If the hitPolicy that is associated with an instance of DecisionTable is COLLECT, the DecisionTable MAY
have an associated aggregation, which is one of the enumerated BuiltinAggregator (see clause 8.2.10).

As akind of Expression, an instance of DecisionTable has a value, which depends on the outputs of the
associated rules, the associated hitPolicy and the associated aggregration, if any. The value of an instance of
DecisionTable is determined according to the specification in clause 10.3.2.10.

DecisionTable inherits all the attributes and model associations from Expression. Table 32 presents the
additional attributes and model associations of the DecisionTable element.

Table 32: DecisionTable attributes and model associations

Attribute Description

input: InputClause [*] This attributes lists the instances of InputClause that compose this
DecisionTable.

output: OutputClause [¥] This attributes lists the instances of OutputClause that compose

this DecisionTable.

annotation: RuleAnnotationClause [*] This attribute lists the instances of RuleAnnotationClause that
compose this DecisionTable.

rule: DecisionRule [*] This attributes lists the instances of DecisionRule that compose
this DecisionTable.

hitPolicy: HitPolicy The hit policy that determines the semantics of this DecisionTable.
Default is: UNIQUE.

aggregation: BuiltinAggregator If present, this attribute specifies the aggregation function to be
applied to the unordered set of values of the applicable rules to
determine the value of this DecisionTable when the hitPolicy is

COLLECT.
preferredOrientation: The preferred orientation for the diagrammatic representation of this
DecisionTableOrientation [0..1] DecisionTable. This DecisionTable SHOULD BE represented

as specified by this attribute.

outputLabel: string[0..1] This attribute gives a description of the decision table output, and is
often the same as the name of the InformationItem for which the
decision table is the value expression.

Decision Model and Notation 1.3 94

8.3.2 Decision Table Input and Output metamodel

Ina DecisionTable, an input specifies an inputExpression (the subject) and a number of inputEntries.
An output specifies the name and the domain of definition of an output value, a number of outputEntries.

The class InputClause is used to model a decision table input, and the class OutputClause is used to model a
decision table output, and the class RuleAnnotationClause is used to model a decision table annotation.

An instance of InputClause is made of an optional inputExpression and an ordered list of inputEntry,
which are instances of UnaryTests. An instance of OutputClause optionally references a t ypeRe £, specifying its

datatype, and it is made of an ordered list of outputEntry,

which are instances of LiteralExpression, and an

optional defaultOutputEntry, which is also an instance of LiteralExpression. An instance of

RuleAnnotationClause contains a name of type String.

When a DecisionTable contains more than one OutputClause, each OutputClause SHALL have a name.
When a DecisionTable has a single OutputClause, the OutputClause SHALL NOT have a name. A

RuleAnnotationClause SHALL have a name.

Table 33, Table 34 and Table 35 present the attributes and model associations of InputClause, OutputClause and

RuleAnnotationClause respectively.

Table 33: InputClause attributes and model associations

Attribute

Description

inputExpression: Expression [0..1]

The subject of this InputClause.

inputValues: UnaryTests [0..1]

This attribute contains UnaryTests that constrain the result
of the inputExpression of this InputClause.

Table 34: OutputClause attributes and model associations

Attribute

Description

typeRef: String [1]

The outputClause of a single output decision table
SHALL NOT specify a typeRef. OutputClauses of a
multiple output decision table MAY specify a typeRef. A
typeRef is the name of the datatype of the output, either an
ItemDefinition, a base type in the specified
expressionLanguage, or an imported type.

name: string [0..1]

The outputClause of a single output decision table
SHALL NOT specify a name. OutputClauses of a multiple
output decision table SHALL specify a name.

outputValues: UnaryTests [0..1]

This attribute contains UnaryTests that constrain the result
of the outputEntrys of the DecisionRules corresponding
to this OutputClause.

defaultOutputEntry: Expression [0..1]

In an Incomplete table, this attribute lists an instance of
Expression thatis selected when no rules match for the
decision table.

Decision Model and Notation 1.3

95

Table 35: RuleAnnotationClause attributes and model associations

Attribute Description

name: string [1] RuleAnnotationClause SHALL specify a name that
is used as the name of the rule annotation column of the
containing decision table.

8.3.3 Decision Rule metamodel
The class DecisionRule is used to model the rules in a decision table (see 8.2).

An instance of DecisionRule has an ordered list of inputEntry instances which are instances of UnaryTests, an
ordered list of outputEntry instances, which are instances of LiteralExpression, and an ordered list of
ruleAnnotations.

In a tabular representation of the containing instance of DecisionTable, the representation of an instance of
DecisionRule depends on the orientation of the decision table. For instance, if the decision table is represented
horizontally (rules as row, see 8.2.2), instances of DecisionRule are represented as rows, with all the inputEntrys
represented on the left of all the outputEntrys, and all the ruleAnnotations represented to their right.

By definition, a DecisionRule element that has no inputEntrys is always applicable. Otherwise, an instance of
DecisionRule is said to be applicable if and only if, all of the DecisionTable’s inputExpression values
satisfy their corresponding inputEntry.

An inputExpression satisfies its corresponding inputEntry if and only if one of the following alternatives is

true:

a) One of the expressions in the inputEntry evaluates to a value, and the inputExpression value is equal
to that value;

b) One of the expressions in the inputEntry evaluates to a list of values, and the inputExpression value is
equal to at least one of the values in that list;

¢) One of the expressions in the inputEntry is a unary test, and the unary test evaluates to true when the
inputExpression value is applied to it

d) One of the expressions in the inputEntry is a boolean expressions using the special ‘?” variable and that

expression evaluates to true when the inputExpression value is assigned to ?’
The inputEntrys are matched in arbitrary order.

The inputEntry elements SHALL be in the same order as the containing DecisionTable's inputs.
The i” inputExpression must satisfy the /" inputEntry forall inputEntrys in order for the DecisionRule
to match, as defined in section 8.1.

The outputEntry elements SHALL be in the same order as the containing DecisionTable's outputs.
The i" outputEntry SHALL be consistent with the t ypeRef of the i” OutputClause.

The ruleAnnotation elements SHALL be in the same order as the containing DecisionTable's annotations. The
i" ruleAnnotation refers to the i” RuleAnnotationClause.

Table 36 presents the attributes and model associations of the DecisionRule element; Table 36 presents the attributes and
model associations of the RuleAnnotation element.

Decision Model and Notation 1.3 96

Table 36: DecisionRule attributes and model associations

Attribute

Description

inputEntry: UnaryTests[0..%]

The instances of UnaryTests that specify the input
conditions that this DecisionRule must match for the
corresponding (by index) inputExpression.

outputEntry: LiteralExpression [1..¥]

A list of the instances of LiteralExpression that
compose the output components of this DecisionRule.

annotationEntry: RuleAnnotation [0..]

A list of the instances of RuleAnnotation that compose
the annotations of this DecisionRule and match the
corresponding (by index) instances of
RuleAnnotationClause.

Table 37: RuleAnnotation attributes and model associations

Attribute

Description

text: string [0..1]

The text of the RuleAnnotation.

8.4 Examples

Table 38 provides examples for the various types of decision table discussed in this section. Further examples may be
found in clause 11.1.4, in the context of a complete example of a DMN decision model.

Decision Model and Notation 1.3

97

Table 38: Examples of decision tables

Single Hit
Unique Applicant Risk Rating
u Applicant Age Medical History Applicant Risk Rating
1 good Medium
> 60
2 bad High
3 [25..60] - Medium
4
<25 good Low
5 bad Medium
Applicant Risk Rating
Applicant Age <25 [25..60] > 60
Medical History good bad - good bad
Applicant Risk Rating Low Medium Medium Medium High
U 1 2 3 4 5
Applicant Risk Rating
Applicant Age <25 [25..60] > 60
Medical History good bad - good bad
Low X - - - -
Medium X X X
High X
U 1 2 3 4 5
Single Hit
Any Person Loan Compliance

A Persons Credit Person Credit Person Education Person Loan
Rating from Bureau Card Balance Loan Balance Compliance

1 A < 10000 < 50000 Compliant

2 Not(A) - - Not Compliant

3 - >=10000 - Not Compliant

4 - - >= 50000 Not Compliant

Example case: not A, >= $10K, >= 50K -> Not Compliant (rules 2,3,4)

Decision Model and Notation 1.3

98

Single Hit

Priority Applicant Risk Rating
P Applicant Age Medical History Applicant Risk Rating
High, Medium, Low
1 >=25 good Medium
2 > 60 bad High
3 - bad Medium
4 <25 good Low
Single Hit
First Special Discount
F Type of Order Customer Location | Type of Customer Special Discount %
1 Web us Wholesaler 10
2 Phone - -
3 - Non-US -
4 - - Retailer
Special Discount
Type of Order Web -
Customer Location us -
e e QST Who:’esa/e Ret;:u/e i
Special Discount % 10 5 0
F 1 2 3
Example case: Web, non-US, Retailer -> 0 (rule 3)
Multiple Hit
No order Holidays
Age - <18 >=60 - [18..60) | >=60 -
Years of Service - - - >=30 | [15..30) - >=30
Holidays 22 5 3
C+ 1 5

Example case: Age=58, Service=31 -> Result=sum(22, 5, 3)=30

Decision Model and Notation 1.3

99

Multiple Hit

Output order Holidays
o Age Years of Service Holidays
22,5,3,2
1 - - 22
2 >=60 - 3
3 - >=30 3
4 <18 - 5
5 >= 60 - 5
6 - >=30 5
7 [18..60) [15..30) 2
8 [45..60) <30 2
Example case: Age=58, Service=31 -> Result=(22, 5, 3)
Multiple Hit
Rule order

Student Financial Package Eligibility

R Student | Student Extra- | Student National Student Financial Package
GPA Curricular Honor Society Eligibility List
Activities Membership
Count
1 >3.5 >=4 Yes 20% Scholarship
2 >3.0 - Yes 30% Loan
3 >3.0 >=2 No 20% Work-On-Campus
4 <=3.0 - - 5% Work-On-Campus

Example case: For GPA=3.6, EC Activities=4, NHS Membership -> result = (20% scholarship,
30% loan)

Decision Model and Notation 1.3

100

9 Simple Expression Language (S-FEEL)

9.1 Introduction

DMN nes the friendly enough expression language (FEEL) for the purpose of giving standard executable
semantics to trerry kinds of expressions in decision model (see 10).

This section defines a simple subset of FEEL, S-FEEL, for the purpose of giving standard executable semantics to
decision models that use only simple expressions: in particular, decision models where the decision logic is modeled
mostly or only using decision tables.

Experience with DMN since its release has shown that few if any complete decision models can be defined using S-
FEEL. Individual decision tables can be defined using only S-FEEL but within a decision model there is generally at least
one decision that requires FEEL. Developers and users are therefore encouraged to use and implement the full FEEL
specification rather than the S-FEEL subset.

9.2 S-FEEL syntax

The syntax for the S-FEEL expressions used in this section is specified in the EBNF below: it is a subset of the FEEL
syntax specified in clause 10.3.1.2.

Grammar rules:

1. expression = simple expression ;

2. arithmetic expression =

2.a addition | subtraction |

2.b multiplication | division |

2.c exponentiation |

2.d arithmetic negation ;

3 simple expression = arithmetic expression | simple value | comparison ;

4 simple expressions = simple expression , { "," , simple expression } ;
5 simple positive unary test =

Sa ["<"|"<="|">"|">="], endpoint |

5.b interval ;

6 interval = (open interval start | closed interval start) , endpoint, ".." , endpoint , (open interval end | closed interval
end);

7 open interval start ="("|"]";

8 closed interval start ="[" ;

9 openintervalend=")" | "[";

10 closed interval end ="]" ;

11 simple positive unary tests = simple positive unary test, { "," , simple positive unary test } ;
12 simple unary tests =

12.a simple positive unary tests |

12.b "not", "(", simple positive unary tests, ")" |

12.c "-"

Decision Model and Notation 1.3 101

Alan Fish, 10/23/19
Editorial

13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36

37
38

endpoint = simple value ;

simple value = qualified name | simple literal ;
qualified name = name , { "." , name } ;
addition = expression , "+" , expression ;

n_n

subtraction = expression , "-" , expression ;
multiplication = expression , "*" | expression ;
division = expression , "/" , expression ;
exponentiation = expression, "**", expression ;

arithmetic negation , expression ;

name = name start , { name part | additional name symbols } ;
name start = name start char, { name part char } ;

name part = name part char , { name part char } ;

name start char = "2" | [A-Z] | "_"| [a-z] | [wCO-\uD6] | [wD8-\uF6] | [\wF8-\u2FF] | [\u370-\u37D] | [\u37F-\ulFFF]
| [w200C-\u200D] | [\u2070-\u218F] | [\u2C00-\u2FEF] | [\u3001-\uD7FF] | [\uF900-\uFDCF] | [\uFDF0-\uFFFD] |
[\u10000-\uEFFFF] ;

name part char = name start char | digit | \uB7 | [\u0300-\u036F] | [\u203F-\u2040] ;
additional name SymbOlS o H'H | H/H ‘ Vl_ll ‘ nn ‘ VI+H | nkn ;

simple literal = numeric literal | string literal | Ean literal | date time literal ;

string literal = """, { character — (""" | vertical space) | string escape sequence}, """ ;
an literal = "true" | "false" ;
numeric literal = ["-"], (digits, [".", digits] | ".", digits) ;

digit =[0-9] ;

digits = digit , {digit} ;

date time literal = ("date" | "time" | "duration"), "(", string literal , ")" ;
comparison = expression , ("="|"!="|"<" | "<="|">"|">=") expression ;

white space = vertical space | \u0009 | \u0020 | \u0085 | \u00AO | \u1680 | \ul8OE | [\u2000-\u200B] | \u2028 | \u2029
| \u202F | \u205F | \u3000 | \uFEFF ;

vertical space = [\uO00A-\u000D];
string escape sequence = "\"" | "\"" | "\" | "\n" | "\c" | "\t" | "\u", hex digit, hex digit, hex digit, hex digit;

9.3 S-FEEL data types

S-FEEL supports all FEEL data types: number, string, boolean, days and time duration, years and months duration, time
and date, although with a simplified definition for some of them.

S-FEEL number has the same literal and values spaces as the XML Schema decimal datatype. Implementations are
allowed to limit precision to 34 decimal digits and to round toward the nearest neighbor with ties favoring the even
neighbor. Notice that “precision is not reflected in this value space. the number 2.0 is not distinct from the number 2.00”
[XML Schema]. Notice, also, that this value space is totally ordered. The definition of S-FEEL number is a simplification
over the definition of FEEL number.

Decision Model and Notation 1.3 102

Alan Fish, 04/30/19
DMN13-120

Alan Fish, 04/30/19
DMN13-120

S-FEEL supports FEEL string and FEEL Boolean: FEEL string has the same literal and values spaces as the Java String
and XML Schema string datatypes. FEEL boolean has the same literal and values spaces as the Java Boolean and XML
Schema Boolean datatypes.

S-FEEL supports the FEEL time data type. The lexical and value spaces of FEEL time are the literal and value spaces of
the XML Schema time datatype. Notice that, “since the lexical representation allows an optional time zone indicator,
time values are partially ordered because it may not be able to determine the order of two values one of which has a time
zone and the other does not. Pairs of time values with or without time zone indicators are totally ordered” [XSD].

S-FEEL does not support FEEL date and time. However, it supports the date type, which is like FEEL date and time with
hour, minute, and second required to be absent. The lexical and value spaces of FEEL date are the literal and value spaces
of the XML Schema date datatype.

S-FEEL supports the FEEL days and time duration and years and months duration datatypes. FEEL days and time
duration and years and months duration have the same literal and value spaces as the XPath Data Model
dayTimeDuration and yearMonthDuration datatypes, respectively. That is, FEEL days and time duration is derived from
the XML Schema duration datatype by restricting its lexical representation to contain only the days, hours, minutes and
seconds components, and FEEL years and months duration is derived from the XML Schema duration datatype by
restricting its lexical representation to contain only the year and month components.

The FEEL data types are specified in details in clause 10.3.2.2.

9.4 S-FEEL semantics

S-FEEL contains only a limited set of basic features that are common to most expression and programming languages,
and on the semantics of which most expression and programming languages agree.

The semantics of S-FEEL expressions are defined in this section, in terms of the semantics of the XML Schema datatypes
and the XQuery 1.0 and XPath 2.0 Data Model datatypes, and in terms of the corresponding functions and operators
defined by XQuery 1.0 and XPath 2.0 Functions and Operators (prefixed by “op:” below). A complete stand-alone
specification of the semantics is to be found in clause 10.3.2, as part of the definition of FEEL. Within the scope of S-
FEEL, the two definitions are equivalent and equally normative.

Arithmetic addition and subtraction (grammar rule) have the same semantics as:
e op:numeric-add and op:numeric-subtract, when its two operands are numbers;

e op:add-yearMonthDurations and op:subtract-yearMonthDurations, when the two operands are years and months
durations;

e op:add-dayTimeDuration and subtract:dayTimeDurations, when the two operands are days and time durations;

e op:add-yearMonthDuration-to-date and op:subtract-yearMonthDuration-from-date, when the first operand is a
years and months duration and the second operand is a date;

e op:add-dayTimeDuration-to-date and op:subtract-dayTimeDuration-from-date, when the first operand is a days
and time duration and the second operand is a date;

e op:add-dayTimeDuration-to-time and op:subtract-dayTimeDuration-from-time, when the first operand is a days
and time duration and the second operand is a time.

In addition, arithmetic subtraction has the semantics of op:subtract-dates or op:subtract-times, when the two operands are
dates or times, respectively.

Arithmetic addition and subtraction are not defined in other cases.

Arithmetic multiplication and division (grammar rule E e the same semantics as defined for op:numeric-multiply
and op:numeric-divide, respectively, when the two operands—< numbers. They are not defined otherwise.

Arithmetic exponentiation (grammar rule eﬁned as the result of raising the first operand to the power of the
second operand, when the two operands are nut<?s. It is not defined in other cases.

Decision Model and Notation 1.3 103

Alan Fish, 10/09/19
DMN13-140

Alan Fish, 10/09/19
DMN13-140

http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/xmlschema11-2/

Arithmetic negation (grammar rule En efined only when its operand is a number: in that case, its semantics is
according to the specification of op:nume<-inary-minus.

Comparison operators (grammar rule ween numbers are defined according to the specification of op:numeric-
equal, op-numeric-less-than and op:numeri¢—reater-than, comparisons between dates are defined according to the
specification of op:date-equal, op:date-less-than and op:date-greater-than; comparisons between times are defined
according to the specification of op:time-equal, op:time-less-than and op:time-greater-than; comparisons between years
and months durations are defined according to the specification of op:duration-equal, op:yearMonthDuration-less-than
and op:year-MonthDuration-greater-than; comparisons between days and time durations are defined according to the
specification of op:duration-equal, op:dayTimeDuration-less-than and op:dayTimeDuration-greater-than.

String and Booleans can only be compared for equality: the semantics of strings and Booleans equality is as defined in the
specification of fn:codepoint-equal and op:Boolean-equal, respectively.

Comparison operators are defined only when the two operands have the same type, except for years and months duration
and days and time duration, which can be compared for equality. Notice, however, that “with the exception of the zero-
length duration, no instance of xs:dayTimeDuration can ever be equal to an instance of xs:yearMonthDuration.” [XFO].

Given an expression o to be tested and two endpoint el and e2:
e isin the interval (el..e2), also notated Jel..e2[, if and only if 0 > el and 0 <el
e s in the interval (el..e2], also notated Jel..e2], if and only if 0 > el and 0 <e2
e isin the interval [el..e2] if and only if 0 > el and 0 < e2
e s in the interval [el..e2), also notated [el..e2[, if and only if 0 > el and 0 <¢e2

An expression to be tested satisfies an instance of simple unary tests (grammar rule 12) if and only if, either the
expression is a list and the expression satisfies at least one simple unitary test in the list, or the simple unitary tests is

73T

9.5 Use of S-FEEL expressions

This section summarizes which kinds of S-FEEL expressions are allowed in which role, when the expression language is
S-FEEL.

9.5.1 Item definitions

The expression that defines an allowed value SHALL be an instance of simple unary tests (grammar rule), where
only the values in the defined or referenced type that satisfy the test are allowed values.

9.5.2 Invocations

In the bindings of an invocation, the binding formula SHALL be a simple expression (grammar rule 53).

9.5.3 Decision tables
Each input expression SHALL be a simple expression (grammar rule 53).
Each list of input values SHALL be an instance of simple unary tests (grammar rule).

Each list of SHALL be an instance of simple unary tests (grammar rule
).
Each input entry SHALL be an instance of simple unary tests (grammar rule).

Each output entry SHALL be a simple expression (grammar rule).E

Decision Model and Notation 1.3 104

Alan Fish, 10/09/19
DMN13-140

Alan Fish, 10/09/19
DMN13-140

Alan Fish, 10/09/19
DMN13-140

10 Expression Language (FEEL)

10.1 Introduction

In DMN, all decision logic is represented as boxed expressions. Clause 7.2 introduced the concept of the boxed
expression and defined two simple kinds: boxed literal expressions and boxed invocations. Clause 8 defined decision
tables, a very important kind of boxed expression. This section completes the graphical notation for decision logic, by
defining other kinds of boxed expressions.

The expressions 'in the boxes' are FEEL expressions. FEEL stands for Friendly Enough Expression Language and it has
the following features:

e Side-effect free

e Simple data model with numbers, dates, strings, lists, and contexts
e Simple syntax designed for a wide audience

e Three-valued logic (true, false, null)

This section also completely specifies the syntax and semantics of FEEL. The syntax is specified as a grammar (10.3.1).
The subset of the syntax intended to be rendered graphically as a boxed expression is also specified as a meta-model
(10.5).

FEEL has two roles in DMN:
L. As a textual notation in the boxes of boxed expressions such as decision tables,

2. As a slightly larger language to represent the logic of expressions and DRGs for the main purpose of composing
the semantics in a simple and uniform way

10.2 Notation

10.2.1 Boxed Expressions
This section builds on the generic notation for decision logic and boxed expressions defined in clause 7.2.
We define a graphical notation for decision logic called boxed expressions. This notation serves to decompose the

decision logic model into small pieces that can be associated with DRG artifacts. The DRG plus the boxed expressions
form a complete, mostly graphical language that completely specifies Decision Models.

A boxed expression is either

a decision table,

a boxed FEEL expression,
a boxed invocation,

a boxed context,

a boxed list,

a relation, or

a boxed function.

Boxed expressions are defined recursively, i.e., boxed expressions can contain other boxed expressions. The top-level
boxed expression corresponds to the decision logic of a single DRG artifact. This boxed expression SHALL have a name
box that contains the name of the DRG artifact. The name box may be attached in a single box on top, as shown in Figure
10.1:

Decision Model and Notation 1.3 105

Alan Fish, 04/30/19
DMN13-106

Name

top-level boxed expression

Figure 10.1: Boxed expression

Alternatively, the name box and expression box can be separated by white space and connected on the left side with a
line, as shown in Figure 10.2:

Name

top-level boxed expression

Figure 10.2: Boxed expression with separated name and expression boxes

Graphical tools are expected to support appropriate graphical links, for example, clicking on a decision shape opens a
decision table.

10.2.1.1 Decision Tables

The executable decision tables defined here use the same notation as the decision tables defined in Clause 8. Their

execution semantics is defined in clause 10.3.2.10.

10.2.1.2 Boxed FEEL expression

A boxed FEEL expression is any FEEL expression e, as defined by the FEEL grammar (clause 10.3.1), in a table cell, as
shown in Figure 10.3:

Figure 10.3: Boxed FEEL expression

The meaning of a boxed expression containing e is FEEL(e, s), where s is the scope. The scope includes the context
derived from the containing DRD as described in 10.4, and any boxed contexts containing e.

It is usually good practice to make e relatively simple, and compose small boxed expressions into larger boxed
expressions.
10.2.1.3 Boxed Invocation

The syntax for boxed invocation is described in clause 7.2.3. This syntax may be used to invoke any function (e.g.,
business knowledge model, FEEL built-in function, boxed function definition).

The box labeled 'invoked business knowledge model' can be any boxed expression whose value is a function, as shown in
Figure 10.4:

Decision Model and Notation 1.3 106

Name

function-valued expression
parameter 1 binding expression 1
parameter 2 binding expression 2
parameter n binding expression n

Figure 10.4: Boxed invocation

The boxed syntax maps to the textual syntax defined by grammar rules 38, 39, 40, 41. Boxed invocation uses named
parameters. Positional invocation can be achieved using a boxed expression containing a textual positional invocation.

The boxed syntax requires at least one parameter. A parameterless function must be invoked using the textual syntax, e.g.,
as shown in Figure 10.5.

function-valued expression()

Figure 10.5: Parameterless function

Formally, the meaning of a boxed invocation is given by the semantics of the equivalent textual invocation, e.g.,
function-valued expression(parameter;: binding expression,;, parameter.: binding expression,, ...).

10.2.1.4 Boxed Context

A boxed context is a collection of n (name, value) pairs with an optional result value. Each pair is called a context entry.
Context entries may be separated by whitespace and connected with a line on the left (top). The intent is that all the
entries of a context should be easily identified by looking down the left edge of a vertical context or across the top edge of
a horizontal context. Cells SHALL be arranged in one of the following ways (see Figure 10.6, Figure 10.7):

Name 1 Value 1

Name 2 Value 2

Name n Value n
Result

Figure 10.6: Vertical context

Decision Model and Notation 1.3 107

Name 1 Name 2 Name n

Result
Value 1 Value 2 Value n

Figure 10.7: Horizontal context

The context entries in a context are often used to decompose a complex expression into simpler expressions, each with a
name. These context entries may be thought of as intermediate results. For example, contexts without a final Result box
are useful for representing case data (see Figure 10.8).

Applicant Data

Age 51

MaritalStatus "M"

EmploymentStatus "EMPLOYED"

ExistingCustomer false

Monthly Income 10000.00

Repayments | 2500.00

Expenses 3000.00

Figure 10.8: Use of context entries

Contexts with a final result box are useful for representing calculations (see Figure 10.9).

Decision Model and Notation 1.3 108

Eligibility

Age Applicant. Age

Monthly Income Applicant. Monthly. Income
Pre-Bureau Risk Category Affordability. Pre-Bureau Risk Category
Installment Affordable Affordability. Installment Affordable

if Pre-Bureau Risk Category = "DECLINE" or
Installment Affordable = false or
Age <18 or
Monthly Income < 100

then "INELIGIBLE"

else "ELIGIBLE"

Figure 10.9: Use of final result box

When decision tables are (non-result) context entries, the output cell can be used to name the entry, thus saving space.
Any format decision table can be used in a vertical context. A jagged right edge is allowed. Whitespace between context
entries may be helpful. See Figure 10.10.

Name 1 Value 1
Name 2
Name n Value n
Result

Figure 10.10: Vertical context with decision table entry

Color is suggested.
The names SHALL be legal FEEL names. The values and optional result are boxed expressions.

Boxed contexts may have a decision table as the result, and use the named context entries to compute the inputs, and give
them names. For example (see Figure 10.11):

Decision Model and Notation 1.3 109

Post-Bureau Risk Category

Existing Customer

Applicant. ExistingCustomer

Credit Score

Report. CreditScore

Application Risk Score

Affordability Model(Applicant, Product).

Application Risk Score

U Existing nilicetenitoy Credit Score Post-Bureau Risk Category
Customer Score

1 <590 “HIGH”

2 <=120 [590..610] “MEDIUM”

3 >610 “LOW”
true

4 <600 “HIGH”

5 >120 [600..625] “MEDIUM”

6 >625 “LOW”

7 <580 “HIGH”

8 <=100 [580..600] “MEDIUM”

9 >600 “LOW”
false

10 <590 “HIGH”

11 >100 [590..615] “MEDIUM”

12 >615 “Low”

Figure 10.11: Use of boxed expressions with a decision table

Formally, the meaning of a boxed context is { “Name 1”: Value 1, “Name 2”: Value 2, ..., “Name n”: Value n } if no
Result is specified. Otherwise, the meaning is { “Name 1”: Value 1, “Name 2”: Value 2, ..., “Name n”: Value n,
“result”: Result }.result. Recall that the bold face indicates elements in the FEEL Semantic Domain. The scope includes

the context derived from the containing DRG as described in 10.4.

Decision Model and Notation 1.3

Boxed context entries for contexts that do not have a result box are accessible outside the context (as QNs), subject to the
scope rules defined in clause 10.3.2.11. Boxed context entries for contexts that have a result box are not accessible
outside the context.

10.2.1.5 Boxed List
A boxed list is a list of # items. Cells SHALL be arranged in one of the following ways (see Figure 10.12, Figure 10.13):

Item 1

Item 2

Itemn

Figure 10.12: Vertical list

Item 1, Item 2, Item n

Figure 10.13: Horizontal list

Line styles are normative. The items are boxed expressions. Formally, the meaning of a boxed list is just the meaning of
the list, i.e., [Item 1, Item 2, ..., Item 7]. The scope includes the context derived from the containing DRG as described
in 10.4.

10.2.1.6 Relation

A vertical list of homogeneous horizontal contexts (with no result cells) can be displayed with the names appearing just
once at the top of the list, like a relational table, as shown in Figure 10.14:

Name 1 Name 2 Name n
Value 1a Value 2a Value na
Value 1b Value 2b Value nb
Value 1m Value 2m Value nm

Figure 10.14: Relation

10.2.1.7 Boxed Function

A Boxed Function Definition is the notation for parameterized boxed expressions.

The boxed expression associated with a Business Knowledge Model SHALL be a boxed function definition or a decision
table whose input expressions are assumed to be the parameter names.

A boxed function has 3 cells:
1. Kind, containing the initial letter of one of the following:

e FEEL

Decision Model and Notation 1.3 111

e PMML
e Java
The Kind box can be omitted for Feel functions, including decision tables.
2. Parameters: 0 or more comma-separated names, in parentheses

3. Body: a boxed expression

The 3 cells SHALL be arranged as shown in Figure 10.15:

K (Parameter1, Parameter2, ...)

Body

Figure 10.15: Boxed function definition

For FEEL functions, denoted by Kind FEEL or by omission of Kind, the Body SHALL be a FEEL expression that
references the parameters. For externally defined functions denoted by Kind Java, the Body SHALL be a context as
described in 10.3.2.13.3 and the form of the mapping information SHALL be the java form. For externally defined
functions denoted by Kind PMML, the Body SHALL be a context as described in 10.3.2.13.3 and the form of the mapping
information SHALL be the pmm/ form.

Formally, the meaning of a boxed function is just the meaning of the function, i.e., FEEL(function(Parameterl,
Parameter?2, ...) Body) if the Kind is FEEL, and FEEL(function(Parameterl, Parameter?2, ...) external Body) otherwise.
The scope includes the context derived from the containing DRG as described in 10.4.

10.2.2 FEEL

A subset of FEEL, defined in the next section, serves as the notation "in the boxes" of boxed expressions. A FEEL object
is a number, a string, a date, a time, a duration, a function, a context, or a list of FEEL objects (including nested lists).

Note: A JSON object is a number, a string, a context (JSON calls them maps) or a list of JSON objects. So FEEL is an
extension of JSON in this regard. In addition, FEEL provides friendlier syntax for literal values, and does not require
context keys to be quoted.

Here we give a "feel" for the language by starting with some simple examples.

10.2.2.1 Comparison of ranges

Ranges and lists of ranges appear in decision table input entry, input value, and output value cells. In the examples in
Table 39, this portion of the syntax is shown underlined. Strings, dates, times, and durations also may be compared, using
typographical literals defined in section 7.2.2.1.

Table 39: FEEL range comparisons

FEEL Expression Value
5in(<=5) true
5in ((5..10]) false
5in ([5..10]) true
5in(4,5.6) true

Decision Model and Notation 1.3 112

FEEL Expression Value

5in (<5,>5) false
2012-12-31in ((2012-12-25..2013- | true
02-14))

10.2.2.2 Numbers

FEEL numbers and calculations are exemplified in Table 40.

Table 40: FEEL numbers and calculations

FEEL Expression Value
decimal(1, 2) 1.00
25+ .2 0.45
.10 * 30.00 3.0000
1+ 3/2*2-2**3 -4.0
13 0.3333333333333333333333333333333333
decimal(1/3, 2) 0.33
1=1.000 true
1.01/2 0.505
decimal(0.505, 2) 0.50
decimal(0.515, 2) 0.52
1.0*10**3 1000.0

10.3 Full FEEL Syntax and Semantics

Clause 9 introduced a subset of FEEL sufficient to support decision tables for Conformance Level 2 (see clause 2). The
full DMN friendly-enough expression language (FEEL) required for Conformance Level 3 is specified here. FEEL is a
simple language with inspiration drawn from Java, JavaScript, XPath, SQL, PMML, Lisp, and many others.

The syntax is defined using grammar rules that show how complex expressions are composed of simpler expressions.
Likewise, the semantic rules show how the meaning of a complex expression is composed from the meaning of
constituent simper expressions.

DMN completely defines the meaning of FEEL expressions that do not invoke externally-defined functions. There are no
implementation-defined semantics. FEEL expressions (that do not invoke externally-defined functions) have no side-
effects and have the same interpretation in every conformant implementation. Externally-defined functions SHOULD be
deterministic and side-effect free.

Decision Model and Notation 1.3 113

10.3.1 Syntax
FEEL syntax is defined as grammar here and equivalently as a UML Class diagram in the meta-model (10.5)

10.3.1.1 Grammar notation

The grammar rules use the ISO EBNF notation. Each rule defines a non-terminal symbol S in terms of some other
symbols S;, S5, ... The following table summarizes the EBNF notation.

Table 41: EBNF notation

Example Meaning

S=S¢; Symbol S is defined in terms of symbol S,
Si| Sz Either Ssor S;

S;, S S; followed by S,

[S4 S1 occurring 0 or 1 time

{S} S1 repeated 0 or more times

k*Sy S; repeated k times

"and" literal terminal symbol

We extend the ISO notation with character ranges for brevity, as follows:
A character range has the following EBNF syntax:

character range = "[", low character, "-", high character, "]";

low character = unicode character ;

high character = unicode character ;

unicode character = simple character | code point ;

heXﬁdeClmal dlglt = lloll I ll1|l | |I2ll | ll3ll I |l4|l | |I5ll | |l6|l | ll7|l | ll8|| | llgll |
llalv | IIAII | llbll | IIBII | IICII IICII I lldll I IIDII | llell | IIEII | llf!l | IIFII ;

A simple character is a single Unicode character, e.g. a, 1, $, efc. Alternatively, a character may be specified by its
hexadecimal code point value, prefixed with |u.

Every Unicode character has a numeric code point value. The low character in a range must have numeric value less than
the numeric value of the high character.

For example, hexadecimal digit can be described more succinctly using character ranges as follows:
hexadecimal digit = [0-9] | [a-f] | [A-F] ;
Note that the character range that includes all Unicode characters is /\u0-\ul OFFF E

Decision Model and Notation 1.3 114

Alan Fish, 10/08/19
DMN13-127

Alan Fish, 08/10/19
DMN13-127

http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip

10.3.1.2 Grammar rules

The complete FEEL grammar is specified below. Grammar rules are numbered, and in some cases alternatives are
lettered, for later reference. Boxed expression syntax (rule 53) is used to give execution semantics to boxed expressions.

1.

2.

10.
11.
12.
13.
14.
15.

expression =

a.

b.

boxed expression |

textual expression ;

textual expression =

ISE

/0

e
f.
g

h.

textual expressions = textual expression , { ",

for expression | if expression | quantified expression

disjunction |
conjunction |
comparison |
arithmetic expression |

instance of |

path expression | filter expression | function invocation |

literal | simple positive unary test | name | "(",

arithmetic expression =

a.
b.
c.

d.

addition | subtraction |
multiplication | division |
exponentiation |

arithmetic negation ;

, textual expression } ;

simple expression = arithmetic expression | simple value ;

simple expressions = simple expression , { ",

nn

simple positive unary test =

a.

b.

[H<" ‘ ||<:" | ">" ‘ ||>:"] s endpoint |

interval ;

, simple expression } ;

nn

interval = (open interval start | closed interval start) , endpoint , ".." ,

end) ;

open interval start ="(" | "]" ;

closed interval start ="[" ;

open interval end =")" | "[";

closed interval end = "]" ;

positive unary test = expression ;

ession , ")" ;

endpoint , (open interval end | closed interval

positive unary tests = positive unary test, { "," , positive unary test } ;
unary tests =
a. positive unary tests |

b.

"not", " (", positive unary tests, ")" |

Decision Model and Notation 1.3

115

Alan Fish, 10/09/19
DMN13-140
Grammar rules 13 & 14 deleted

Alan Fish, 04/30/19
DMN13-121

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

41.
42.
43,
44.
45,
46.

47.
48.

nn

C.
endpoint = simple value ;

simple value = qualified name | simple literal ;
qualified name = name , {"." , name } ;
addition = expression , "+" , expression ;

nn

subtraction = expression , , expression ;

multiplication = expression , "*" | expression ;

division = expression , "/" , expression ;

exponentiation = expression, "**" expression ;

arithmetic negation ="-" , expression ;

name = name start , { name part | additional name symbols } ;
name start = name start char, { name part char } ;

name part = name part char , { name part char } ;

name start char ="?" | [A-Z] | "_" | [a-z] | [\uCO-\uD6] | [\uD8-\uF6] | [\uF8-\u2FF] | [\u370-\u37D] | [\u37F-\ulFFF] |
[\u200C-\u200D] | [\u2070-\u218F] | [\u2C00-\u2FEF] | [\u3001-\uD7FF] | [\uF900-\uFDCF] | \uFDF0-\uFFFD] |
[\u10000-\uEFFFF] ;

name part char = name start char | digit | uB7 | [\u0300-\u036F] | [\u203F-\u2040] ;
additiona] name SymbO]S o H.H | H/H ‘ VI_H ‘ non ‘ H+H | nkn ;
literal = simple literal | "null" ;

simple literal = numeric literal | string literal | an literal | date time literal ;

string literal = """, { character — (""" | vertical space) | string escape sequence}, ;

an literal = "true" | "false" ;

"
numeric literal = ["-"], (digits, [".", digits] | "." , digits) ;
digit =[0-9] ;

digits = digit , {digit} ;

function invocation = expression , parameters ;

parameters = "(" , (named parameters | positional parameters), ")" ;

n.n

named parameters = parameter name , ":" , expression ,

nn n.n

," , parameter name , ":" , expression } ;

parameter name = name ;

positional parameters = [expression , { "," , expression } | ;

nn

path expression = expression , "." , name ;

"

for expression = "for" , name , "in" , iteration context { "," , name , "in" , iteration context } , "return" , expression ;
if expression = "if" , expression , "then" , expression , "else" expression ;

" | " nn

quantified expression = ("some" | "every") , name , "in" , expression, { "," , name , "in" , expression } , "satisfies" ,

expression ;
disjunction = expression , "or" , expression ;

conjunction = expression , "and" , expression ;

Decision Model and Notation 1.3 116

Alan Fish, 04/30/19
DMN13-120

Alan Fish, 04/30/19
DMN13-120

49. comparison =

a. expression s (n_n | H!:H | ’|<H | H<:" | ">" | l’>:|l)) expression |
b. expression, "between" , expression , "and" , expression |
c. expression, "in", positive unary test |-

d. expression, "in", " (", positive unary tests, ")" ;

50. filter expression = expression , "[", expression , "|" ;

51. instance of = expression , "instance" , "of" , type ;

52. type = gualitied-name;

qualified name

Nist' '<' type >

'context' '<' name "' type { '.' name "' type } >'|
"function' '<' [type { ", "type }]"™>'"->' type

Y

53. boxed expression = list | function definition | context ;

54. list="[", [expression, { ",

55. function definition = "function" , "(", [formal parameter { ",

"

, expression } |, "]";

"

, formal parameter }], ")",

["external"], expression ;

56. formal parameter = parameter name [":" type] ;

57. context= "{", [contextentry, {",

58. context entry = key ,

, context entry }],"}" ;

n.n

, expression ;

59. key = name | string literal ;

60. date time literal = at literal | function invocation;

61. white space = vertical space | \u0009 | \u0020 | \u0085 | \u00AO | \u1680 | \ul8OE | [\u2000-\u200B] | \u2028 | \u2029
| \u202F | \u205F | \u3000 | \uFEFF ;

62. vertical space = [\u000A-\u000D]

[T3L)

63. iteration context = expression, [“..”, expression J;

64. string escape sequence ="\" | "\"" | "\" | "\n" | "\t" | "\t" |

itcode poinlE

65. at literal = “@”, string literal| =
Additional syntax rules:

Operator precedence is given by the order of the alternatives in grammar rules 1, 2 and 4, in order from lowest to
highest. E.g., (boxed) invocation has higher precedence than multiplication, multiplication has higher
precedence than addition, and addition has higher precedence than comparison. Addition and subtraction have
equal precedence, and like all FEEL infix binary operators, are left associative.

Java-style comments can be used, i.e. '//' to end of line and /* ... */.

In rule 62, the only permitted functions are the builtins date, time, date and timeLE duration.

The string in rule 65 must follow the date string, time string, date and timeéswring or duration string
syntax, as detailed in section 10.3.4.1. E

Decision Model and Notation 1.3 117

Alan Fish, 10/10/19
DMN13-139

Alan Fish, 10/10/19
DMN13-139

Alan Fish, 10/10/19
DMN13-139

Alan Fish, 10/10/19
DMN13-127

Alan Fish, 10/10/19
DMN13-139

Alan Fish, 04/30/19
DMN13-37

Alan Fish, 04/30/19
DMN13-120

10.3.1.3 Literals, data types, built-in functions

FEEL supports literal syntax for numbers, strings, booleans, ull. (See
grammar rules, clause 10.3.1.2). Literals can be mapped directly to values in the FEEL semantic dotrram (clause 10.3.2.1).

FEEL supports the following datatypes:
e number
e string
e boolean
e days and time duration
e years and months duration
* g
e time

e date and time

E]

10.3.1.4 Tokens, Names, and White space

A FEEL expression consists of a sequence of tokens, possibly separated with white space (grammar rule 63). A token is a
sequence of Unicode characters, either

* A literal terminal symbol in any grammar rule other than grammar rule 30. Literal terminal symbols are enclosed
in double quotes in the grammar rules, e.g., “and”, “+”, “=", or

* A sequence conforming to grammar rule 28, 29, 35, or 37

White space (except inside strings) acts as token separators. Most grammar rules act on tokens, and thus ignore white
space (which is not a token).

A name (grammar rule 27) is defined as a sequence of tokens. l.e. the name Income Taxes Amount is defined as the
list of tokens [Income, Taxes, Amount |. The name Income+Expenses is defined as the list of tokens [Income, +,
Expenses |. A consequence of this is that a name like Phone Number with one space in between the tokens is the same
as Phone Number with several spaces in between the tokens.

A name start (grammar rule 26) SHALL NOT be a literal terminal symbol.
A name part (grammar rule 27) MAY be a literal terminal symbol.

10.3.1.5 Contexts, Lists, Qualified Names, and Context Lists

A context is a map of key-value pairs called context entries, and is written using curly braces to delimit the context,
commas to separate the entries, and a colon to separate key and value (grammar rule 57). The key can be a string or a
name. The value is an expression.

A list is written using square brackets to delimit the list, and commas to separate the list items (grammar rule 54).

Decision Model and Notation 1.3 118

Alan Fish, 10/10/19
DMN13-139

Alan Fish, 04/30/19
DMN13-66

Alan Fish, 10/10/19
DMN13-139

Contexts and lists can reference other contexts and lists, giving rise to a directed acyclic graph. Naming is path based. The
qualified name (QN) of a context entry is of the form N,.N, ... N, where N, is the name of an in-scope context.

Nested lists encountered in the interpretation of N,.N> ... N, are preserved. E.g.,

Nested lists can be flattened using the flatten() built-in function (10.3.4).

10.3.1.6 Ambiguity

FEEL expressions reference Informationltems by their qualified name (QN), in which name parts are separated by a
period. For example, variables containing components are referenced as [varName].[componentName]. Imported
elements such as Informationltems and ItemDefinitions are referenced by namespace-qualified name, in which the first
name part is the name specified by the Import element importing the element. For example, an imported variable
containing components is referenced as [import name].[varName].[componentName].

Because names are a sequence of tokens, and some of those tokens can be FEEL operators and keywords, context is
required to resolve ambiguity. For example, the following could be names or other expressions:

e ab
e a-b
e what if?

e Profit and loss

Ambiguity is resolved using the scope. Name tokens are matched from left to right against the names in-scope, and the
longest match is preferred. In the case where the longest match is not desired, parenthesis or other punctuation (that is not
allowed in a name) can be used to disambiguate a FEEL expression. For example, to subtract b from a if ¢-b is the name
of an in-scope context entry, one could write (a)-(b). Notice that it does not help to write a - b, using space to separate the
tokens, because the space is not part of the token sequence and thus not part of the name.

10.3.2 Semantics

FEEL semantics is specified by mapping syntax fragments to values in the FEEL semantic domain. Literals (clause
10.3.1.3) can be mapped directly. Expressions composed of literals are mapped to values in the semantic domain using
simple logical and arithmetic operations on the mapped literal values. In general, the semantics of any FEEL expression
are composed from the semantics of its sub-expressions.

10.3.2.1 Semantic Domain
The FEEL semantic domain D consists of an infinite number of typed values. The types are organized into a lattice

The types include
* simple datatypes such as number, boolean, string, date, time, and duration
* constructed datatypes such as functions, lists, and contexts
* the Null type, which includes only the null value

* the special type Any, which includes all values in D

Decision Model and Notation 1.3 119

Alan Fish, 06/25/19
DMN13-144

Alan Fish, 04/30/19
DMN13-133

A function is a lambda expression with lexical closure or is externally defined by Java or PMML. A list is an ordered
collection of domain elements, and a context is a partially ordered collection of (string, value) pairs called context entries.

We use italics to denote syntactic elements and boldface to denote semantic elements. For example,

FEEL(/I1+1, 2+2])is [2, 4]

Note that we use bold [] to denote a list in the FEEL semantic domain, and bold numbers 2, 4 to denote those decimal
values in the FEEL semantic domain.

10.3.2.2 Equality, Identity and Equivalence

The semantics of equality are specified in the semantic mappings in clause 10.3.2.15. In general, the values to be
compared must be of the same kind, for example, both numbers, to obtain a non-null result.

Identity simply compares whether two objects in the semantic domain are the same object. We denote the test for identity
using infix is, and its negation using infix is not. For example, FEEL("/"” = I) is null. Note that is never results in null.

Every FEEL expression e in scope s can be mapped to an element e in the FEEL semantic domain. This mapping defines
the meaning of e in s. The mapping may be written e is FEEL(e,s). Two FEEL expressions ¢, and e, are equivalent in

scope s if and only if FEEL(e,s) is FEEL(e,,s). When s is understood from context (or not important), we may abbreviate
the equivalence as e, is e,.

10.3.2.3 Semantics of literals and datatypes
FEEL datatypes are described in the following sub-sections. The meaning of the datatypes includes

1. amapping from a literal form (which in some cases is a string) to a value in the semantic domain

2. aprecise definition of the set of semantic domain values belonging to the datatype, and the operations on them.
Each datatype describes a (possibly infinite) set of values. The sets for the datatypes defined below are disjoint.

We use italics to indicate a literal and boldface to indicate a value in the semantic domain.

10.3.2.3.1 number

FEEL Numbers are based on IEEE 754-2008 Decimal128 format, with 34 decimal digits of precision and rounding
toward the nearest neighbor with ties favoring the even neighbor. Numbers are a restriction of the XML Schema type
precisionDecimal, and are equivalent to Java BigDecimal with MathContext DECIMAL128.

Grammar rule 35 defines literal numbers. Literals consist of base 10 digits and an optional decimal point. —INF, +INF,
and NaN literals are not supported. There is no distinction between

-0 and 0. The number(from, grouping separator, decimal separator) built-in function supports a richer literal format. £.g.,
FEEL(number("1.000.000,01", ".", ",")) = 1000000.01.

FEEL does not support a literal scientific notation. E.g., 1.2e3 is not valid FEEL syntax. Use /.2*]0**3 instead.

A FEEL number is represented in the semantic domain as a pair of integers (p,s) such that p is a signed 34 digit integer
carrying the precision information, and s is the scale, in the range [-6111..6176]. Each such pair represents the number
p/10°. To indicate the numeric value, we write value(p,s). £.g. value(100,2) = 1. If precision is not of concern, we may
write the value as simply 1. Note that many different pairs have the same value. For example, value(1,0) = value(10,1) =
value(100,2).

There is no value for notANumber, positivelnfinity, or negativelnfinity. Use null instead.

10.3.2.3.2 string

Decision Model and Notation 1.3 120

http://docs.oracle.com/javase/7/docs/api/java/math/MathContext.html
http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html
http://www.w3.org/TR/xsd-precisionDecimal/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?reload=true&punumber=4610933

ﬂabelThe 11teral string "abc” 1s mapped to the 5emant1c domam as a sequence of three Umcode characters a,

b. and ¢. written "abe". The literal "\UQ1F40E" is mapped to a sequence of one Unicode character written
"9" corresponding to the code point U+1F40E.7|§|

10.3.2.3.3 boolean

The Boolean literals are given by grammar rule 34. The values in the semantic domain are true and false.

10.3.2.3.4 time

¢ 415Times in FEEL can be
expressed using erther a time hteral see grammar rule 65) or the lzme burlt in function (See 10.3.4.1). We

use boldface time literals to represent values in the semantic domain.| =

A time in the semantic domain is a value of the XML Schema time datatype. It can be represented by a sequence of
numbers for the hour, minute, second, and an optional time offset from Universal Coordinated Time (UTC). If a time
offset is specified, including time offset = 00:00, the time value has a UTC form and is comparable to all time values that
have UTC forms. If no time offset is specified, the time is interpreted as a local time of day at some location, whose
relationship to UTC time is dependent on time zone rules for that location, and may vary from day to day. A local time of
day value is only sometimes comparable to UTC time values, as described in XML Schema Part 2 Datatypes.

A time t can also be represented as the number of seconds since midnight. We write this as value(t). £.g.,
value/(01:01:01) = 3661.

The value, function is one-to-one, but its range is restricted to [0..86400]. So, it has an inverse function value, '(x) that
returns: the corresponding time value for x, if x is in [0..86400]; and value,'(y), where y = x — floor(x/86400) * 86400, if
x is not in [0..86400].

Note: That is, value,'(x) is always actually applied to x modulo 86400. For example, value,(3600) will return the time
of day that is “01:00:00”, value,"(90000) will also return “T01:00:00”, and value,"(-3600) will return the time of day that
is “23:00:00”, treating -3600 seconds as one hour before midnight.

10.3.2.3.5 date

O .Dates in FEEL can be exoressed using e1ther a date 11teral (see grammar rule 65) or
the date() bullt in funct1on (See 10.3.4.1.). A date in the semantic domain is a sequence of numbers for the
year, month, day of the month. The year must be in the range [-999.999.999..999.999.999]. We use boldface
date literals to represent values in the semantic domain.| =

Where necessary, including the value, function (see 10.3.2.3.6), a date value is considered to be equivalent to a date time
value in which the time of day is UTC midnight (00:00:00).

10.3.2.3.6 date-time

and time in FEEL can be expre@%ed using e1ther a a’ate time liter al (see grammar rule 65) or the date and

time() built-in function (See 10.3.4.1.). We use boldface date and time literals to represent values in the

semantic domain.| =

A date and time in the semantic domain is a sequence of numbers for the year, month, day, hour, minute, second, and
optional time offset from Universal Coordinated Time (UTC). The year must be in the range [-
999,999,999..999,999,999]. If there is an associated time offset, including 00:00, the date-time value has a UTC form and

Decision Model and Notation 1.3 121

Alan Fish, 10/10/19
DMN13-139

Alan Fish, 10/10/19
DMN13-139

Alan Fish, 10/10/19
DMN13-139

Alan Fish, 10/08/19
DMN13-127
Note: special character may be wrong

http://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/xmlschema11-2/

is comparable to all other date-time values that have UTC forms. If there is no associated time offset, the time is taken to
be a local time of day at some location, according to the time zone rules for that location. When the time zone is
specified, e.g., using the IANA tz form (see 10.3.4.1), the date-time value may be converted to a UTC form using the time
zone rules for that location, if applicable.

Note: projecting timezone rules into the future may only be safe for near-term date-time values.

A date and time d that has a UTC form can be represented as a number of seconds since a reference date and time (called
the epoch). We write valueq(d) to represent the number of seconds between d and the epoch. The valueq function is one-
to-one and so it has an inverse function valuey'. E.g., valueq ' (valueq(d)) = d. valueq" returns null rather than a date
with a year outside the legal range.

10.3.2.3.7 days and time duration

rhﬁfﬁfﬁﬁﬁ%m%m#uﬁcﬂﬁﬁdes and tlmc durations
in FFFL can be exnressed using elthel a du1at10n literal (see grammar rule 65) or the duration() built-in
function (See 10.3.4.1.). We use boldface days and time duration literals to represent values in the semantic
domain.fiLliteral format of the characters within the quotes of the string literal is defined by the lexical space of the
XPath Dakervlodel dayTimeDuration datatype. A days and time duration in the semantic domain is a sequence of

numbers for the days, hours, minutes, and seconds of duration, normalized such that the sum of these numbers is
minimized. For example, FEEL(duration("PODT25H")) = PIDT1H.

The value of a days and time duration can be expressed as a number of seconds. E.g., valueqa(P1DT1H) = 90000. The
valueqq function is one-to-one and so it has an inverse function valueqq™”. E.g., valueqa™(90000) = PIDT1H.

10.3.2.3.8 years and months duration

< . fhffdﬂﬁﬁﬁ%tfﬁHﬁ—Hﬁ%ﬁH@PrYedls and momhs

dur. dthllS in PttL can bc L‘mlcsscd using uthu a duration literal (see grammar rule 65) or the duration()
built-in function (See 10.3.4.1.). We use boldface years and month duration literals to represent values in the
semantic domain. E literal format of the characters within the quotes of the string literal is defined by the lexical
space of the XPath D odel yearMonthDuration datatype. A years and months duration in the semantic domain is a

pair of numbers for the years and months of duration, normalized such that the sum of these numbers is minimized. For
example, FEEL(duration("P0Y13M")) = P1Y1M.

The value of a years and months duration can be expressed as a number of months. £.g., valueyma(P1Y1M) = 13. The
value,,q function is one-to-one and so it has an inverse function valueyms”. E.g., valueymq'(13) = P1IY1M.

10.3.2.4 Ternary logic

FEEL, like SQL and PMML, uses of ternary logic for truth values. This makes and and or complete functions from D x
D — D. Ternary logic is used in Predictive Modeling Markup Language to model missing data values.

10.3.2.5 Lists and filters

Lists are immutable and may be nested. The first element of a list L can be accessed using L//] and the /ast element can
be accessed using L/-1]. The n" element from the beginning can be accessed using L/n/, and the n™ element from the end
can be accessed using L/-n/.

If FEEL(L) = L is a list in the FEEL semantic domain, the first element is FEEL(L/1]) = L[1]. If L does not contain n
items, then L[n] is null.

L can be filtered with a Boolean expression in square brackets. The expression in square brackets can reference a list
element using the name ifem, unless the list element is a context that contains the key "item". If the list element is a
context, then its context entries may be referenced within the filter expression without the 'item.’ prefix. For example:

[1, 2, 3, 4] [item > 2] = [3, 4]

Decision Model and Notation 1.3 122

Alan Fish, 10/10/19
DMN13-139

Alan Fish, 10/10/19
DMN13-139

http://dmg.org/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xpath-datamodel/

[{x:d, :2), {x:2, v:3}) [[x=1] = [{x:1, y:2}]

The filter expression is evaluated for each item in list, and a list containing only items where the filter expression is true
is returned. E.g:

[{x:1,y:2}, {xinull, y:3}][x < 2] =[{x:1, y:2}]

5 - WWW%%W#W
S; f(—p M&aefﬁ&kpafmﬁeteFﬁ Wﬁg%@f@ﬂ%ﬁs%w}meﬁ&fypeefﬁﬁ H—H%ek)ﬂgﬁe%he
dﬁm&mﬁﬁ%heﬁp HH-sheuld-betsedinstead-

The expression to be filtered is subject to implicit conversions (10.3.2.9.4) before the entire expression is evaluated.

N n

onvenience, a selection using the "." operator with a list of contexts on its left hand side returns a list of selections,
EEL(e.f, ¢) = [FEEL(f, ¢"), FEEL(f c"), ... | where FEEL(e) = e', €', ...] and ¢' is ¢ augmented with the context
entries of e', ¢'"" is ¢ augmented with the context entries of e'', etc. For example,

[l v:2), 2, v:3) |y = [2,3]

10.3.2.6 Context

A FEEL context is a partially ordered collection of (key, expression) pairs called context entries. In the syntax, keys can
be either names or strings. Keys are mapped to strings in the semantic domain. These strings are distinct within a context.
A context in the domain is denoted using bold FEEL syntax with string keys, e.g. { "key," : expry, "key," : exprs, ... }.

The syntax for selecting the value of the entry named key; from context-valued expression m is m.key;.

If key, is not a legal name or for whatever reason one wishes to treat the key as a string, the following syntax is allowed:
get value(m, "key;"). Selecting a value by key from context m in the semantic domain is denoted as m.key; or get
value(m, "key,")

To retrieve a list of key,value pairs from a context m, the following built-in function may be used. get entries(m).
For example, the following is true:
get entries({key,: "value,"})[key="key,"] . value = "value,"

An expression in a context entry may not reference the key of the same context entry, but may reference keys (as QNs)
from previous context entries in the same context, as well as other values (as QNs) in scope. These references SHALL be
acyclic and form a partial order. The expressions in a context SHALL be evaluated consistent with this partial order.

10.3.2.7 Ranges

+FEEL supports a compact syntax for a range of values, useful in decision table test cells and elsewhere. Ranges
can be syntactically represented either:

Decision Model and Notation 1.3 123

Alan Fish, 06/25/19
DMN13-132

Alan Fish, 30/04/19
DMN13-29

a. as a comparison operator and a single endpoint (grammar rule 7.a.)

b. or a pair of endpoints and endpoint inclusivity flags that indicate whether one or both endpoints are included in
the range (grammar rule 7.b.); on this case, endpoints must be of equivalent types (see section 10.3.2.9.1 for the
definition of type equivalence) and the endpoints must be ordered such that range start <= range end.

Endpoints can be either a literal or a qualified name of the following types: number, string, date, time, date and time, or
duration. The following are examples of valid ranges:

+ <10

e >=date(*“2019-03-31")

e >=@”2019-03-31”

* <= duration(“PT0O1H")

s <= @’PTO1H”

. 5..10

e (birthday .. @”2019-01-01")

Ranges are mapped into the semantic domain as a typed instance of the range type. If the syntax with a single

endpoint and an operator is used. then the other endpoint is undefined (represented by a null value) and the

inclusivity flag is set to false. E.g.:

Table 42: Examples of range properties values

range start included start end end included
[1..10] true 1 10 true
1..10 false 1 10 true
<=10 false null 10 true
> 1 false 1 null false

10.3.2.8 Functions

The FEEL function literal is given by grammar rule 55. Functions can also be specified in DMN via Function Definitions
(see 6.3.9). The constructed type (71, . . ., Tn) — U contains the function values that take arguments of types 71, . . ., Tn
and yield results of type U, regardless of the way the function syntax (e.g., FEEL literal or DMN Function Definition). In
the case of exactly one argument type 7 — U is a shorthand for (T") — U.

10.3.2.9 Relations between types

Every FEEL expression executed in a certain context has a value in D, and every value has a type. The FEEL types are
organized as a lattice (see Figure @"—L\-Mth upper type Any and lower type Null. The lattice determines the
conformance of the different types to each other—For example, because comparison is defined only between values with
conforming types, you cannot compare a number with a boolean or a string.

We define type(e) as the type of the domain element FEEL(e, ¢). where ¢ is an expression defined by grammar rule 1.
Literals for numbers, strings, booleans, null, date, time, date and time and duration literals are mapped to the

Decision Model and Notation 1.3 124

Alan Fish, 2019-04-30
DMN13-37

Alan Fish, 10/10/19
DMN13-139

corresponding node in lattice L. Complex expression such as list, contexts and functions are mapped to the corresponding
parameterized nodes in lattice L.| = fr example, see Table 43.

Table 43: Examples of types of domain elements

|| e type(e) = |
E—
\ 123,?| number
=
\ ﬁue@,a boolean
I—
"abc" string
date("2017-01-01") date
["a", "b", "c"] list<string>
["a", true, 123] list<Any>
| | [1.10) range<number>
\ >= @"2019-01-01” range<date>| —
=
| | {"name": "Peter", i’ageiE| context<”age”:number, “name”:string>
E—
function f(x: number, y: number) x +y (number, number) — number
DecisionA context<”id”:number, “name”:string>
where the typeRef of DecisionA is
<itemDefinition name="Employee">
<itemComponent name="id">
<typeRef>number</typeRef>
</itemComponent>
<itemComponentname="name">
<typeRef>string</typeRef>
</itemComponent>
</itemDefinition>
BkmA (number, number) — number
where the encapsulated logic is
<encapsulatedLogic>
<formalParameter name="x"
typeRef="number" />
<formalParameter name="y"
typeRef="number" />
<literalExpression typeRef="number">
<text>x + y</text>
</literalExpression>
</encapsulatedLogic>

A type expression e defined by grammar rule 54 is mapped to the nodes in the lattice L. by function type(e) as follows:

primitive data type names are mapped to the node with the same name (e.g. string is mapped the string node)

e Null is mapped to the node Null

|
|
‘ * Anyis mapped to the node Any
|
|

e [ist<T> is mapped to the list node with the parameter type(7)

Decision Model and Notation 1.3 125

Alan Fish, 30/04/19
DMN13-37

Alan Fish, 10/10/19
DMN13-139

Alan Fish, 30/04/19
DMN13-37

Alan Fish, 30/04/19
DMN13-37

Alan Fish, 25/06/19
DMN13-144

Alan Fish, 06/25/19
DMN13-144

context(k;:T), ..., k,-T,> where n>1 is mapped to the context node with parameters k;: type(7)). k,: type(7})

function<T,, ...T,> -> T is mapped to the function node with signature type(7)). ..., tvpe(7,) -> type(7)

Type names defined in the itfemDefinitions section are mapped similarly to the context types (see rule above).

If none of the above rules can be applied (e.g. type name does not exist in the decision model) the type
expression is semantically incorrect.| =

| We define two relations between types:

Equivalence (T = S): Types T and S are interchangeable in all contexts

Conformance (T <:S): An instance of type T can be substituted at each place where an instance of type S is
expected.

10.3.2.9.1 Type Equivalence

The equivalence relationship (=) between types is defined as follows:

Primitive datatypes are equivalent to themselves, e.g., string = string.

Two list types list<T> and list<S> are equivalent iff 7 is equivalent to S. For example, the types of [“a”, “b”]
and [“c”’] are equivalent.

Two context types context<lk1;: T o ikn:: T it and context<-l I S P ilm:' Sm>E|equivalent iffn=m
and for every k; :T; there is a unique ZJ Sj such that k; = ljand T, = SJ for i =1, n. Contexttypes are the types

2

defined via ItemDefinitions or the types associated to FEEL context literals such as { “name”: “John”, “age”:
25%.

Two function types (7', ..., Tn) —U and (SI’ Sm) —V are equivalent iff n =m, Tl ESj fori=1,nand U = V.

Two range types range<T> and range<S> are equivalent iff 7 is equivalent to S. For example, the types of
[1..10] and [30..40] are equivalent.| =

Type equivalence is transitive: if typel is equivalent to type2, and type?2 is equivalent to type3, then typel is equivalent to

type3.

10.3.2.9.2 Type Conformance

The conformance relation (<:) is defined as follows:

Conformance includes equivalence. If 7= S then 7'<: S

For every type T, Null <: T <: Any, where Null is the lower type in the lattice and Any the upper type in the
lattice.

The list type list<T> conforms to /ist<S> iff T conforms to S.
The context type context<lk1:' T, .., ikn!: T > conforms to context<-l 1 S P ilm:' Sm> >m and for
every /; .S, there is a unique kJT; such that /, = k] and 7} < S fori=1,m

The function type (7, ..., Tn) — U conforms to type (SI, Sm) —Viffn=m, Sl. < Tl fori=1,nand U<: V.

The FEEL functions follow the “contravariant function argument type” and “covariant function return type”
principles to provide type safety.

The range type range<T> conforms to range<S> iff T conforms to S.|=

Type conformance is transitive: if fypel conforms to type2, and type2 conforms to #ype3, then typel conforms to type3.

Decision Model and Notation 1.3 126

Alan Fish, 10/10/19
DMN13-139

Alan Fish, 04/30/19
DMN13-37

Alan Fish, 10/10/19
DMN13-139

Alan Fish, 04/30/19
DMN13-27

Alan Fish, 2019-06-25
DMN13-144

numiser

date

time

date and

\ Erre 10.16: FEEL lattice type

10.3.2.9.3 Examples

Let us consider the following ItemDefinitions

<itemDefinition name="Employeel">
<itemComponent name="id">
<typeRef>number</typeRef>
</itemComponent>
<itemComponent name="name">
<typeRef>string</typeRef>
</itemComponent>

</itemDefinition>

<itemDefinition name="Employee2">
<itemComponent name="name">
<typeRef>string</typeRef>
</itemComponent>
<itemComponent name="id">

<typeRef>number</typeRef>

Decision Model and Notation 1.3

tirme

days and tims

duration

years and
manthe duration

Mull

range<._._>

list=.. =

+— Conforms to

contaxt=_. >

function=...=

127

Alan Fish, 04/30/19
DMN13-37; DMN13-144; DMN13-139

</itemComponent>

</itemDefinition>

<itemDefinition name="Employee3">

<itemComponent name="id">
<typeRef>number</typeRef>

</itemComponent>

<itemComponent name="name">
<typeRef>string</typeRef>

</itemComponent>

<itemComponent name="age">
<typeRef>number</typeRef>

</itemComponent>

</itemDefinition>

<itemDefinition isCollection="true” name="Employee3List">

<itemComponent name="id">
<typeRef>number</typeRef>

</itemComponent>

<itemComponent name="name">
<typeRef>string</typeRef>

</itemComponent>

<itemComponent name="age">
<typeRef>number</typeRef>

</itemComponent>

</itemDefinition>

and the decisions Decisionl, Decision2, Decision3 and Decision4 with corresponding typeRefs Employeel, Employee2,

Employee3 and Employee3List.

Table 44 provides examples for equivalence to and conforms to relations.

Table 44: Examples of equivalence and conformance relations

type1 type2 equivalent to conforms to
number number True True

string string True True

string date False False

Decision Model and Notation 1.3

128

type1 type2 equivalent to conforms to

date date and time False True

type(Decision) type(Decision?2) True True

type(Decision) type(Decision3) False False

type(Decision3) type(Decision1) False True

type(Decision) type({"id": 1, True True
"name":"Peter"})

type({"id": 1, type(Decision3) False False

"name":"Peter"})

type({"id": 1, type(Decision1) False True

"name":"Peter”, "age": 45})

type({"id": 1, type(Decision3) True True

"name":"Peter", "age": 45})

type([1, 2, 3]) type(["1", "2", "3"]) False False

type([1, 2, 3]) type(Decision3) False False

type(/{"id": 1, type(Decision43) True True

"name":"Peter”, "age": 45}])

type(Decision4) type(Decision3) E

type(function(x:Employee1 | type(function(x:Employee1 | True True

) —Employee1)) —Employee1)

type(function(x:Employee1 | type(function(x:Employee1 | True True

) —Employee1)) —Employee?2)

type(function(x:Employee1 | type(function(x:Employee1 | False True

) —Employee3)) —Employee1)

type(function(x:Employee1 | type(function(x:Employee1 | False False

) —Employee1)

) —Employee1)

Decision Model and Notation 1.3

129

Alan Fish, 10/10/19
DMN13-139

Alan Fish, 10/09/19
DMN13-141

10.3.2.9.4 Type conversions
The type of a FEEL expression e is determined from the value e = FEEL(e, s) in the semantic domain, where s is a set of

variable bindings (see 10.3.2.11 and 10.3.2.12). When an expression appears in a certain context it must be compatible

with a type expected in that context, called the farget type. After the type of the expression is deduced, an implicit

conversion from the type of the expression to the target type can be performed sometimes. If an implicit conversion is
mandatory but it cannot be performed the result is null.

There are several possible type conversions:

- to singleton list:
When the type of the expression is T and the target type is List<T> the expression is converted to a singleton list.

- from singleton list:

When the type of the expression is List<T>. the value of the expression is a singleton list and the target type is T,
the expression is converted by unwraping the first element.

- conforms to:

When the type of the expression is T 2 the target type is T., and T | conforms to T, the value of expression

remains unchanged. Otherwise the result is null.

There are several kinds of contexts in which implicit conversions may occur:

- Filter context (10.3.2.5) in which a filter expression is present. The expression to be filtered is subject to
implicit conversion to singleton list.

- Invocation context (Table 63) in which an argument is bound to a formal parameter of a function. The

arguments are subject to implicit conversion from singleton list.

- Binding contexts in which the value of an expression is bound to a variable with associated type information
(e.g. binding actual parameters to formal parameters in an invocation, or binding the result of a decision’s logic

to the decsion’s output variable). The expression is subject to conforms to conversion.

10.3.2.9.4.1 Examples
The table below contains several examples for singleton list conversions.

Table 45: Examples of singleton list conversions

Expression Conversion Result
3litem > 2] 3 is converted to [3] as this a filter 31
context, and an to singleton list is
applied
contains(["foobar"], "of") ["foobar"] is converted to "foobar”, as false
this is an invocation context and from
singleton list is applied

In the example below, before binding variable decision_003 to value "/23" the conversion to the target type (number)

fails, hence the variable is bound to null,

<decision name="decision 003" id="_ decision_ 003">

<variable name="decision 003" typeref="number"/>

Decision Model and Notation 1.3 130

10.3.2.10 Decision Table

The normative notation for decision tables is specified in Clause 8. Each input expression SHALL be a textual expression
(grammar rule 2). Each list of input values SHALL be an instance of unary tests (grammar rule 15). The value that is
tested is the value of the input expression of the containing InputClause. Each list of output values SHALL be an instance
of unary tests (grammar rule 15). The value that is tested is the value of a selected output entry of the containing
OutputClause. Each input entry SHALL be an instance of unary tests (grammar rule 15). Rule annotations are ignored in
the execution semantics.

The decision table components are shown in Figure 8.5: Rules as rows — schematic layout, and also correspond to the
metamodel in clause 8.3 For convenience, Figure 8.5 is reproduced here.

information item name

H input expression 1 input expression 2 Output label
. input entry 2.1 output entry 1.1
input entry 1.1 -
2 input entry 2.2 output entry 1.2
3 input entry 1.2 - output entry 1.3

The semantics of a decision table is specified by first composing its literal expressions and unary tests into Boolean
expressions that are mapped to the semantic domain, and composed into rule matches then rule hits. Finally some of the
decision table output expressions are mapped to the semantic domain and comprise the result of the decision table
interpretation. Decision table components are detailed in Table 46.

Table 46: Semantics of decision table

Component name (* means optional) Description

input expression One of the N>=0 input expressions, each a literal
expression

input values* One of the N input values, corresponding to the N input

expressions. Each is a unary tests literal (see below).

output values* A unary tests literal for the output.
(In the event of M>1 output components (see Figure 8.12),
each output component may have its own output values)

rules a list of R>0 rules. A rule is a list of N input entries
followed by M output entries. An input entry is a unary
tests literal. An output entry is a literal expression.

hlt pollcy* one Of "U", "A", “P”, an‘ "R", uou, “C", "C+", “C#", "C<",

Decision Model and Notation 1.3 131

Alan Fish, 06/25/19
DMN13-132

Component name (* means optional) Description

“C>" (default is "U")

default output value*® The default output value is one of the output values. If
M>1, then default output value is a context with entries
composed of output component names and output values.

Unary tests (grammar rule 15) are used to represent both input values and input entries. An input expression e is said to
satisfy an input entry ¢ (with optional input values v), depending on the syntax of ¢, as follows:

e grammar rule 15.a: FEEL(e in (¢))=true

e grammar rule 15.b: FEEL(e in (t))=false

e grammar rule 15.c when v is not provided: e != null

e grammar rule 15.c when v is provided: FEEL(e in (v))=true

A rule with input entries #,,¢,, ...,¢y is said to match the input expression list /e, e,, ...,en/ (with optional input values list
[vi,vs,...vy]) if e; satisfies t; (with optional input values v;) for all 7 in 1..N.

A rule is Ait if it is matched and the hit policy indicates that the matched rule's output value should be included in the
decision table result. Each hit results in one output value (multiple outputs are collected into a single context value).
Therefore, multiple hits require aggregation.

The hit policy is specified using the initial letter of one of the following boldface policy names.
Single hit policies:
e Unique — only a single rule can be matched.

e Any — multiple rules can match, but they all have the same output,

e Priority — multiple rules can match, with different outputs. The output that comes first in the supplied output
values list is returned,

e First — return the first match in rule order,
Multiple hit policies:

e Collect — return a list of the outputs in arbitrary order,
¢ Rule order — return a list of outputs in rule order,
e Output order — return a list of outputs in the order of the output values list

The Collect policy may optionally specify an aggregation, as follows:
e C+ —return the sum of the outputs
e C# —return the count of the outputs
e C<-—return the minimum-valued output
e (> —return the maximum-valued output

The aggregation is defined using the following built-in functions specified in clause 10.3.4.4: sum, count, minimum,
maximum. To reduce complexity, decision tables with compound outputs do not support aggregation and support only
the following hit policies: Unique, Any, Priority, First, Collect without operator, and Rule order.

A decision table may have no rule hit for a set of input values. In this case, the result is given by the default output value,
or null if no default output value is specified. A complete decision table SHALL NOT specify a default output value.

The semantics of a decision table invocation DTI are as follows:

Decision Model and Notation 1.3 132

1. Every rule in the rule list is matched with the input expression list. Matching is unordered.
2. If no rules match,

a. if a default output value d is specified, DTI=FEEL(d)

b. else DTI=null.

3. Else let m be the sublist of rules that match the input expression list. If the hit policy is "First" or "Rule order", order m
by rule number.

a. Let o be a list of output expressions, where the expression at index i is the output expression from rule m/i].
The output expression of a rule in a single output decision table is simply the rule's output entry. The output
expression of a multiple output decision table is a context with entries composed from the output names and the
rule's corresponding output entries. If the hit policy is "Output order", the decision table SHALL be single output
and o is ordered consistent with the order of the output values. Rule annotations are ignored for purposes of
determining the expression value of a decision table.

b. If a multiple hit policy is specified, DTI=FEEL(aggregation(o)), where aggregation is one of the built-in
functions sum, count, minimum as specified in clause 10.3.4.4

c. else DTI=FEEL(0/1]).

10.3.2.11 Scope and context stack

A FEEL expression e is always evaluated in a well-defined set of name bindings that are used to resolve QNs in e. This
set of name bindings is called the scope of e. Scope is modeled as a list of contexts. A scope s contains the contexts with
entries that are in scope for e. The last context in s is the built-in context. Next to last in s is the global context. The first
context in s is the context immediately containing e (if any). Next are enclosing contexts of e (if any).

The QN of e is the QN of the first context in s appended with .N, where N is the name of entry in the first context of s
containing e. QNs in e are resolved by looking through the contexts in s from first to last.

10.3.2.11.1Local context

If e denotes the value of a context entry of context m, then m is the local context for e, and m is the first element of s.
Otherwise, e has no local context and the first element of s is the global context, or in some cases explained later, the first
element of s is a special context.

All of the entries of m are in-scope for e, but the depends on graph SHALL be acyclic. This provides a simple solution to
the problem of the confusing definition above: if m is the result of evaluating the context expression m that contains e,
how can we know it in order to evaluate e? Simply evaluate the context entries in depends on order.

10.3.2.11.2Global context

e e el —thatisme
atr-as—H re-tSed alue any-expresstons- Lhe global context is a context created before
the evaluation of e and contains names and values for the variables defined outside expression e that are accessible in e.
For example, when e is the body of a decision D, the global context contains entries for the information requirements and
knowledge requirements of D (i.e., names and logic of the business knowledge models, decisions and decision services

10.3.2.11.3Built-in context
The built-in context contains all the built-in functions.

10.3.2.11.4Special context

Some FEEL expressions are interpreted in a special context that is pushed on the front of s. For example, a filter
expression is repeatedly executed with special first context containing the name 'item' bound to successive list elements.
A function is executed with a special first context containing argument name->value mappings.

Decision Model and Notation 1.3 133

Alan Fish, 10/11/19
DMN13-178

Qualified names (QNs) in FEEL expressions are interpreted relative to s. The meaning of a FEEL expression e in scope s

is denoted as FEEL(e, s). We can also say that e evaluates to e in scope s, or e = FEEL(e, s). Note that e and s are
elements of the FEEL domain. s is a list of contexts.

10.3.2.

external Java methods, between FEEL and external PMML models, and between FEEL and XML, as summarized in

12 Mapping between FEEL and other domains

A FEEL expression e denotes a value e in the semantic domain. Some kinds of values can be passed between FEEL and

Table 47. An empty cell means that no mapping is defined.

Table 47: Mapping between FEEL and other domains

FEEL value Java XML PMML
number java.math.BigDecimal decimal decimal, PROB-NUMBER,
PERCENTAGE-NUMBER
integer integer , INT-NUMBER
double double, REAL-NUMBER
string java.lang.String string string, FIELD-NAME
javax.xml.datatype. date, dateTime, time, date, dateTime, time
XMLGregorianCalendar dateTimestamp conversion required for
= dateDaysSince, et. al.
duration javax.xml.datatype. yearMonthDuration,
Duration dayTimeDuration
boolean java.lang.Boolean boolean boolean
list java.util.List contain multiple child array (homogeneous)
elements
context java.util.Map contain attributes and

child elements

Sometimes we do not want to evaluate a FEEL expression e, we just want to know the type of e. Note that if e has QNs,

then a context may be needed for type inference. We write type(e) as the type of the domain element FEEL(e, c¢).

10.3.2.

13 Function Semantics

FEEL functions can be

built-in, e.g.,
sum (see clause 10.3.4.4), or
user-defined, e.g.,
function(age) age < 21, or
externally defined, e.g.,
function(angle) external {
java: {
class: “java.lang.Math”,
method signature: “cos(double)”

Decision Model and Notation 1.3

134

Alan Fish, 04/30/19
DMN13-66

10.3.2.13.1Built-in Functions

The built-in functions are described in detail in section 10.3.4. In particular, function signatures and parameter domains
are specified. Some functions have more than one signature.

Built-in functions are invoked using the same syntax as other functions (grammar rule 40). The actual parameters must
conform to the parameter domains in at least one signature before or after applying implicit conversions, or the result of
the invocation is null.

10.3.2.13.2 User-defined functions
User-definedfunettonshave-the form-

User-defined functions (grammar rule
55) have the form

function(X1, ... Xn) body

The terms X;, ... X, are formal parameters. Each formal parameter has the form n; or n; :t;, where the n; are the parameter

names and ¢ are their types. If the type isn’t specified, Any is assumed. The meaning of FEEL(function(X;, ... X,) body, s)
is an element in the FEEL semantic domain that we denote as function(argument list: [X;, ... X,], body: body, scope: s)

(shortened to f below). FEEL functions are lexical closures, i.e., the body is an expression that references the formal

parameters and any other names in Scope s.

User-defined functions are invoked using the same syntax as other functions (grammar rule 38). The meaning of an

invocation f(n;.e;.....n,:e,) in scope s is FEEL(f, s) applied to arguments n;.FEEL(e;, §)....n,;FEEL(e,, s). This can also be

written as f(n;:e;....n,:e,).

implicit conversions or ¢ is not specified in X;, for all { in /..n. The result of applying f to the interpreted arguments

n;:e;....n,e, is determined as follows. If f is not a function, or if the arguments do not conform to the argument list, the

result of the invocation is null. Otherwise, let ¢ be a context with entries n;:e;....n,:e,. The result of the invocation is
FEEL(body. s°). where s' = insert before(s. 1. ¢) (see 10.3.4.4).

Invocable elements (Business Knowledge Models orDecision Services) are invoked using the same

syntax as other functions (grammar rule 38). An Invocable is equivalent to a FEEL function whose parameters are the
invocable’s inputs (see 10.4) | =

Decision Model and Notation 1.3 135

Alan Fish, 10/11/19
DMN13-178

Alan Fish, 10/11/19
DMN13-178

Alan Fish, 10/11/19
DMN13-178

10.3.2.13.3 Externally-defined functions
FEEL externally-defined functions have the following form

function(X,, ... X,) external mapping-information

Mapping-information is a context that SHALL have one of the following forms:

{

java: {class: class-name, method signature: method-signature}

/

or

{

pmml: {document: IRI, model: model-name}
/

The meaning of an externally defined function is an element in the semantic domain that we denote as
function(argument list: [.X,, ... X,], external: mapping-information).

The java form of the mapping information indicates that the external function is to be accessed as a method on a Java
class. The class-name SHALL be the string name of a Java class on the classpath. Classpath configuration is
implementation-defined. The method-signature SHALL be a string consisting of the name of a public static method in the
named class, followed by an argument list containing only Java argument type names. The argument type information
SHOULD be used to resolve overloaded methods and MAY be used to detect out-of-domain errors before runtime.

The pmml! form of the mapping information indicates that the external function is to be accessed as a PMML model. The
IRI SHALL be the resource identifier for a PMML document. The model-name is optional. If the model-name is
specified, it SHALL be the name of a model in the document to which the IR/ refers. If no model-name is specified, the
external function SHALL be the first model in the document.

When an externally-defined function is invoked, actual argument values and result value are converted when possible
using the type mapping table for Java or PMML .n a
conversion is not possible, null is substituted. If a result cannot be obtained, e.g. an exception is thrown,'e'result of the
invocation is null.

Passing parameter values to the external method or model requires knowing the expected parameter types. For Java, this
information is obtained using reflection. For PMML, this information is obtained from the mining schema and data
dictionary elements associated with independent variables of the selected model.

Note that DMN does not completely define the semantics of a Decision Model that uses externally-defined functions.
Externally-defined functions SHOULD have no side-effects and be deterministic.

10.3.2.13.4 Function name
To name a function, define it as a context entry. For example:
{
isPositive : function(x) x > 0,
isNotNegative : function(x) isPositive(x+1),
result: isNotNegative(0)
/

10.3.2.13.5 Positional and named parameters

An invocation of any FEEL function (built-in, user-defined, or externally-defined) can use positional parameters or
named parameters. If positional, all parameters SHALL be supplied. If named, unsupplied parameters are bound to null.

Decision Model and Notation 1.3 136

Alan Fish, 10/11/19
DMN13-181

Alan Fish, 10/11/19
DMN13-181

10.3.2.14 For loop expression
The for loop expression iterates over lists of elements or ranges of numbers. The general syntax is:
Jorijinic, [, iyinic, /[, ...]] return e
where:
icy, icy ..., ic, are iteration contexts
* i, 1, .., i, are variables bound to each element in the iteration context

* e s the return expression

An iteration context may either be an expression that returns a list of elements, or two expressions that return integers
connected by “..”. Examples of valid iteration contexts are:

« [1,2,3]
e alist

« 1.10

* 50.40

e x.xt10

A for loop expression will iterate over each element in the iteration context, binding the element to the corresponding
variable i, and evaluating the expression e in that scope.

When the iteration context is a range of numbers, the for loop expression will iterate over the range incrementing or
decrementing the value of i, by 1, depending if the range is ascendant (when the resulting integer from the first

expression is lower than the second) or descendant (when the resulting integer from the first expression is higher than the

second).

The result of the for loop expression is a list containing the result of the evaluation of the expression e for each individual

iteration in order.

The expression e may also reference an implicitly defined variable called “partial” that is a list containing all the results
of the previous iterations of the expression. The variable “partial” is immutable. E.g.: to calculate the factorial list of
numbers, from 0 to N, where N is a non-negative integer, one may write:

oriin 0.N return if i = 0 then [else i * partial[-
f 0.N ifi =0then I elsei * I[-1]

When multiple iteration contexts are defined in the same for loop expression, the resulting iteration is a cross-product of
the elements of the iteration contexts. The iteration order is from the inner iteration context to the outer iteration context.

E.g., the result of the following for loop expression is:
Joriin [i,i,],jin []j,] returne=[r,ryryr,]
Where:
r,=FEEL(e, {i:i,j:j, partial:f], ... })
ry=FEEL(e, {i: i, j:j, partial:[r], ...)
ry= FEEL(e, {i: iz,j:jl, partial:[rl,rzl, e })

ry=FEEL(e, {i: i, j:j, partial:[r ,r,t5], ... })

Decision Model and Notation 1.3 137

10.3.2.15 Semantic mappings

The meaning of each substantive grammar rule is given below by mapping the syntax to a value in the semantic domain.
The value may depend on certain input values, themselves having been mapped to the semantic domain. The input values
may have to obey additional constraints. The input domain(s) may be a subset of the semantic domain. Inputs outside of
their domain result in a null value, unless

E

Table 48: Semantics of FEEL functions

Grammar Rule | FEEL Syntax Mapped to Domain
55 function(n,...nx) e function(argument list: [n, ... ny], body: e, scope: s)
55 function(n;, ...nn) external e function(argument list: [ny, ... nA],
external: e)
See 10.3.2.7.

Table 49: Semantics of other FEEL expressions

Grammar FEEL Syntax Mapped to Domain

Rule

44 foriginicy, iyinic,, ... returne [FEEL(e, s'), FEEL(e, s"), ...]

45 if e; then e; else e; if FEEL(e/) is true then FEEL(e>) else FEEL(e3)
46 some nqsin e, nzine,, ... false or FEEL(e, s') or FEEL(e, s") or ...

satisfies e

46 everynlinel, n2ine2, ... true and FEEL(e, s') and FEEL(e, s") and ...
satisfies e

47 erorezor ... FEEL(es) or FEEL(e) or ...

48 erand ez and ... FEEL(es) and FEEL(e2) and ...

49.a e =null FEEL(e) is null

49.a null =e FEEL(e) is null

49.a e I=null FEEL(e) is not null

49.a null 1= e FEEL(e) is not null

Notice that we use bold syntax to denote contexts, lists, conjunctions, disjunctions, conditional expressions, true, false,
and null in the FEEL domain.

The meaning of the conjunction a and b and the disjunction a or b is defined by ternary logic. Because these are total
functions, the input can be true, false, or otherwise (meaning any element of D other than true or false).

Decision Model and Notation 1.3 138

Alan Fish, 06/25/19
DMN13-132

‘ A conditional if a then b else ¢ is equal to b if a is true. and equal to ¢ otherwise.

s' is the scope s with a special first context containing keys n;, n,, etc. bound to the first element of the Cartesian product
of FEEL(¢e)) x FEEL(e;) X ..., 8" is s with a special first context containing keys bound to the second element of the
Cartesian product, etc. When the Cartesian product is empty. the some ... satisfies quantifier returns false and the everyv ...
satisfies quantifier returns MLE

Table 50: Semantics of conjunction and disjunction

a b aandb aorb
true true true true
true false false true
true otherwise null true
false true false true
false false false false
false otherwise false null
otherwise true null true
otherwise false false null
otherwise otherwise null null

Negation is accomplished using the built-in function not. The ternary logic is as shown in Table 51.

Table 51: Semantics of negation

a not(a)
true false
false true

otherwise null

A-eondittona-if-a-then-b-else-eisequal-to-bif-ais-true-and-equal-to-e-otherwise:
sis-the-seepe-s-wi speetal-firste > e S5 Haetes

Equality and inequality map to several kind- and datatype-specific tests, as shown in Table 52, Table 53 and Table 54.
By definition, FEEL(e, /= e,) is FEEL(not(e;=e)). The other comparison operators are defined only for the datatypes
listed in Table 54. Note that Table 54 defines only ‘<’; >’ is similar to ‘<’ and is omitted for brevity; e;<=e; is defined
as e;<e,or e;=e;.

Decision Model and Notation 1.3 139

Alan Fish, 04/30/19
DMN13-155

Alan Fish, 04/30/19
DMN13-115

Table 52: General semantics of equality and inequality

Grammar Rule | FEEL Syntax Input Domain Result
49.a el=e2 e1 and e2 must both be of the See below
same kind/datatype — both
numbers, both strings, etc.
49.a er<e; e; and e; must both be of the See below

same kind/datatype — both
numbers, both strings, etc.

Table 53: Specific semantics of equality

kind/datatype er=e;

list lists must be same length N and eq[i] = e;[i] for 1 <i<N.

context contexts must have same set of keys K and es.k = ez.k for every
kinK

range the ranges must specify the same endpoint(s) and the same

endpoint inclusivity =

function internal functions must have the same parameters, body, and
scope. Externally defined functions must have the same
parameters and external mapping information.

number value(eq) = value(e;). Value is defined in 10.3.2.3.1. Precision is
not considered.

string e1 is the same sequence of characters as e

date

date and time

time

days and time duration

value(e,) = value(e;). Value is defined in 10.3.2.3.7.

years and months duration

value(e,) = value(e;). Value is defined in 10.3.2.3.8.

boolean

e, and e, must both be true or both be false

Decision Model and Notation 1.3

140

Alan Fish, 06/26/19
DMN13-35

Alan Fish, 10/10/19
DMN13-139

Table 54: Specific semantics of inequality

datatype

esr<e;

number

value(e,) < value(e;). value is defined in 10.3.2.3.1. Precision is
not considered.

string

sequence of characters ey is lexicographically less than the
sequence of characters e.. /.e., the sequences are padded to the
same length if needed with \u0 characters, stripped of common
prefix characters, and then the first character in each sequence
is compared.

date

el < e2 if the year value of e1 < the year value of e2

el < e2 if the year values are equal and the month value of e1 <
the month value of e2

e1 < e2 if the year and month values are equal and the day
value of e1 < the day value of e2

date and time

valueq(e1) < valuea(ez). valueq is defined in 10.3.2.3.5. If one
input has a null timezone offset, that input uses the timezone
offset of the other input.

time

valuei(eq) < valuei(ez). value; is defined in 10.3.2.3.4. If one
input has a null timezone offset, that input uses the timezone
offset of the other input.

days and time duration

valuea(e1) < valuegud(ez). valueqq is defined in 10.3.2.3.7.

years and months duration

valueyma(e1) < valueyma(e2). valueymq is defined in 10.3.2.3.8.

FEEL supports additional syntactic sugar for comparison. Note that Grammar Rules (clause 10.3.1.2) are used in decision
table condition cells. These decision table syntaxes are defined in Table 55.

Table 55: Semantics of decision table syntax

Grammar FEEL Syntax Equivalent FEEL Syntax applicability

Rule

49.b e between e; and e; e;>=exandes <=e;3

49.c erin [eses,...] e;=exores=ezor... e, and e; are endpoints
49.c erin [ezes,...] erinezoresinesor... ez and es are ranges
49.c esin <=e; er<=e;

49.c erin <e; er<e;

49.c esin >=e; e >=ez

49.c erin <e; er<e;

49.c erin (ez..e3) er > ez and es<e;

Decision Model and Notation 1.3

141

Grammar FEEL Syntax Equivalent FEEL Syntax applicability

Rule

49.c ey in (ez..es] er > e; and e;<=e3

49.c esin [ez..e3) er >= ez and es<e;

49.c esin [ez..es] er >= ez and e;<=e3

49.c eline2 el=e2 e2 is a qualified name that does
not evaluate to a list

49.c eline2 list contains(e2, e1) el is a simple value that is not a list
and e2 is a qualified name that
evaluates to a list

49.c eline2 {?:el,r:e2jr e2 is a boolean expression that

uses the special variable “?”

Addition and subtraction are defined in Table 56 and Table 57. Note that if input values are not of the listed types, the

result is null.

Table 56: General semantics of addition and subtraction

Grammar Rule FEEL Input Domain and Result
19 ert+e See below
20 er1—e See below

Table 57: Specific semantics of addition and subtraction

type(ei)

type(ez)

er+te; e1—e;

result type

number

number

Let e1=(p1,51) and e>=(p2,s:) as defined in 10.3.2.3.1. If

value(p1,s1) +/- value(p2,s:) requires a scale outside

the range of valid scales, the result is null. Else the

result is (p,s) such that

o value(p,s) = value(p1,s1) +/- value(p2,sz) + €

e s < max(s1,s2)

e s is maximized subject to the limitation that p has 34
digits or less

e g is a possible rounding error.

number

Decision Model and Notation 1.3

142

type(ei)

type(ez)

ertey e1—e;

result type

date and time

date and time

Addition is undefined. Subtraction is defined as
valueqqs”(valuea(er)-valuea(ez)), where valueq is
defined in 10.3.2.3.5 and valuequq™” is defined in
10.3.2.3.7. In case either value is of type date, it is
implicitly converted into a date and time with time of
day of UTC midnight ("00:00:00") as defined in
10.3.2.3.6. Subtraction requires either both values to
have a timezone or both not to have a timezone.
Subtraction is undefined for the case where only one of
the values has a timezone.

days and time
duration

time time Addition is undefined. Subtraction is defined as days and time
valueqq” (value(es)-valuei(e,)) where value, is defined | duration
in 10.3.2.3.4 and valueqd™ is defined in 10.3.2.3.7.
years and years and valueymq”(valueyma(e1) +/- valueyma(ez)) where valueyms | years and
months months and valueymd™ is defined in 10.3.2.3.8. months
duration duration duration
days and days and valueqq” (valuead(e1) +/- valueqd(e2)) where valueg days and time

time duration

time duration

and valueqd™ is defined in 10.3.2.3.7

duration

date and time

years and
months
duration

date and time (date(es.year +/— ez.years +
floor((es.month +/— e2.months)/12),

es.month +/— ez.months — floor((es.month +/—
e;.months)/12) * 12, es.day), time(e)),

where the named properties are as defined in Table 65
below, and the date, date and time, time and floor
functions are as defined in 10.3.4, value4 and valueg”
is defined in 10.3.2.3.5 and valueymq is defined in
10.3.2.3.8.

date and time

years and
months
duration

date and time

Subtraction is undefined. Addition is commutative and
is defined by the previous rule.

date and time

date and time

days and
time duration

valuey'(valueg(e1) +/- valueaq(e2)) where valueq and
valueq” is defined in 10.3.2.3.5 and valueqa is defined
in 10.3.2.3.7.

date and time

days and date and time | Subtraction is undefined. Addition is commutative and date and time
time duration is defined by the previous rule.
time days and value;'(valueye) +/- valueaad(ez)) where value; and time
time duration | value" are defined in 10.3.2.3.4 and valueaa is
defined in 10.3.2.3.7.
days and time Subtraction is undefined. Addition is commutative and time

time duration

is defined by the previous rule.

Decision Model and Notation 1.3

143

type(e1) type(e2) er+e; e—e; result type
string string Subtraction is undefined. Addition concatenates the string
strings. The result is a string containing the sequence
of characters in e1 followed by the sequence of
characters in e2.
date years and date(es.year +/- ez.years + floor((ei.month +/— date
months ez.months)/12), e;.month +/- e2.months -
duration floor((es.month +/-— e..months)/12) * 12, es.day),
where the named properties are as defined in Table 65
below, and the date and floor functions are as defined
in 10.3.4
years and date Subtraction is undefined. Addition is commutative and date
months is defined by the previous rule.
duration
date days and date(valueq™ (valueg(e1) +/- valueqd(ez))) where valuey | date
time duration | and valueq is defined in 10.3.2.3.5 and valueqq is
defined in 10.3.2.3.7
days and date Subtraction is undefined. Addition is commutative and date

time duration

is defined by the previous rule.

Multiplication and division are defined in Table 58 and Table 59. Note that if input values are not of the listed types, the

result is null.

Table 58: General semantics of multiplication and division

Grammar Rule FEEL Input Domain and Result
21 er e See below
22 er/e; See below

Decision Model and Notation 1.3

144

Table 59: Specific semantics of multiplication and division

type(e1) type(ez) e ez e//e; result type
number number If value(p1,s1) * value(pa,s:) If value(p2,s2)=0 or value(p1,s1) / | number
e1=(p1,S1) €:=(p2,S2) requires a scale outside the value(pz,s:) requires a scale
range of valid scales, the result outside the range of valid scales,
is null. Else the result is (p,s) the result is null. Else the result
such that is (p,s) such that
value(p,s) = value(p1,s1) * . value(p,s) = value(p1,s1) /
value(pz,sz) + € value(pz,sz) + €
. SSsits; . SS584-S;
s is maximized subject to the s is maximized subject to the
limitation that p has 34 digits limitation that p has 34 digits
orless orless
. €is apossible rounding error | . ¢€is a possible rounding error
years and number valueymq'(valueymq(e1) * If value(e2)=0, the result is null. years and
months value(ez)) where valueymq and Else the result is valueymd’ months
duration valueymq' are defined in (valueyms(e1) / value(ez)) where | duration
10.3.2.3.8. valueymqs and value,mq” are
defined in 10.3.2.3.8.
number years and See above, reversing e; and e; Not allowed years and
months months
duration duration
years and years and Not allowed If valueyma(e2)=0, the result is number
months months null. Else the result is
duration duration valueymq(e1) / valueyma(ez)
where valueymq is defined in
10.3.2.3.8.
days and number valueqq'(valueqa(es) * value(ez)) | If value(e2)=0, the result is null. days and time
time duration where valueqqs and valueqq™ are | Else the result is valuegd duration
defined in 10.3.2.3.7. '(valueaa(er) * value(e;)) where
valueqs and valueaq™ are
defined in 10.3.2.3.7.
number days and See above, reversing e; and e: Not allowed days and time
time duration
duration
days and days and Not allowed If valueqa(e2)=0, the result is number
time duration | time null. Else the result is
duration valueg(e1) / valueqs(ez)

where valueaq is defined in
10.3.2.3.7.

Decision Model and Notation 1.3

145

Table 60: Semantics of exponentiation

Grammar FEEL Input Domain Result

Rule Syntax

23 er * ez type(es) is number. value(e,) is ar- If value(eq)*@“*) requires a scale that is out
integera number| e range of range, the result is null. Else the result is
[-999,999,999..9 99,999]. (p,s) such that

e value(p,s)= value(eq)"@"*c,) +¢
® pis limited to 34 digits

® ¢ is rounding error

Type-checking is defined in Table 61. Note that #ype is not mapped to the domain, and-iri-isnotthe name-of atype,and
nilHsnot-aninstanee-efany-typeand null is the only value in the Null type (see 10.3.2. I)B

Before evaluating the instance of operator both operands are mapped to the type lattice L (see 10.3.2.9).

Table 61: Semantics of type-checking

Grammar | FEEL Syntax Mapped to Domain Examples
Rule
51 e; instance of If e, cannot be mapped to a [123] instance of list<number> is true
typee node in the lattice L, the "abc” instance of string is true
result is null. 123 instance of string is false

_ . 123 instance of list is null as a list type
If e, is null and type(e,) is Null. | requires parameters (see rule 54).
the result is true.

If type(e,) conforms to type(e,)
(see section 10.3.2.9) and e, is

not null, the result is true._
Otherwise the result is false.
true#type{e%eeﬂieﬂm&t&%yﬁe
{seesection1+0-3-2-9)and-eis-
notnull-

Negative numbers are defined in Table 62.

Table 62: Semantics of negative numbers

Grammar Rule | FEEL Syntax Equivalent FEEL Syntax

24 -e 0-e

Invocation is defined in Table 63. An invocation can use positional arguments or named arguments. If positional, all
arguments must be supplied. If named, unsupplied arguments are bound to null. Note that e can be a user-defined
function, a user-defined external function, or a built-in function. The arguments are subject to implicit conversions
(10.3.2.9.4). If the argument types before or after conversion do not conform to the corresponding parameter types, the
result of the invocation is null.E

Decision Model and Notation 1.3 146

Alan Fish, 06/25/19
DMN13-132

Alan Fish, 06/25/19
DMN13-144

Alan Fish, 04/30/19
DMN13-27

Alan Fish, 04/30/19
DMN13-111

Table 63: Semantics of invocation

Grammar Rule FEEL

Mapped to Domain

Applicability

38, 39, 42 e(es,..) e(eq,...) e is a function with matching
arity
38, 39, 40, 41 e(nseq,...) e(ns:eq,...) e is a function with matching

parameter names

Properties are defined in Table 64 and Table 65. If type(e) is date and time, time, or duration, and name is a property
name, then the meaning is given by Table 65 and Table 66. For example, FEEL(date and time("2012-03-07Z2").year) =

2012.

Table 64: General semantics of properties

Grammar Rule FEEL

Mapped to Domain

Applicability

18 e.name e."name" type(e) is a context

18 e.name see below type(e) is a date/time/duration
Table 65: List of properties per type

type(e) e . name name =

date result is the named component of the date object e. year, month, day, weekday

Valid names are shown to the right.

date and time

result is the named component of the date and time
object e. Valid names are shown to the right.

year, month, day, weekday, hour,
minute, second, time offset,
timezone

time result is the named component of the time object e.

Valid names are shown to the right

hour, minute, second, time offset,
timezone

years and months

result is the named component of the years and

duration months duration object e. Valid names are shown to

the right.

years, months

days and time

result is the named component of the days and time

duration duration object e. Valid names are shown to the right.

days, hours, minutes, seconds

Decision Model and Notation 1.3

147

Alan Fish, 10/11/19
DMN13-139

Alan Fish, 10/11/19
DMN13-178

Table 66: Specific semantics of date, time and duration properties

name

type(name)

description

year

number

The year number as an integer in the interval [-999,999,999 ..
999,999,999

month

number

The month number as an integer in the interval [1..12], where 1 is
January and 12 is December

day

number

The day of the month as an integer in the interval [1..31]

weekday

number

The day of the week as an integer in the interval [1..7] where 1 is
Monday and 7 is Sunday (compliant with the definition in ISO 8601)

hour

number

The hour of the day as an integer in the interval [0..23]

minute

number

The minute of the hour as an integer in the interval [0..59]

second

number

The second of the minute as a decimal in the interval [0..60)

time offset

days and time
duration

The duration offset corresponding to the timezone the date or date
and time value represents. The time offset duration must be in the
interval [duration(“-PT14H”)..duration(“PT14H”)] as per the XML
Schema Part 2 dateTime datatype. The time offset property
returns null when the object does not have a time offset set.

timezone

string

The timezone identifier as defined in the IANA Time Zones
database. The timezone property returns null when the object does
not have an IANA timezone defined.

years

number

The normalized years component of a years and months duration
value as an integer. This property returns null when invoked on a
days and time duration value.

months

number

The normalized months component of a years and months duration
value. Since the value is normalized, this property must return an
integer in the interval [0..11]. This property returns null when
invoked on a days and time duration value.

days

number

The normalized days component of a days and time duration value
as an integer. This property returns null when invoked on a years
and months duration value.

hours

number

The normalized hours component of a days and time duration
value. Since the value is normalized, this property must return an
integer in the interval [0..23]. This property returns null when
invoked on a years and months duration value.

minutes

number

The normalized minutes component of a days and time duration
value. Since the value is normalized, this property must return an
integer in the interval [0..59]. This property returns null when
invoked on a years and months duration value.

seconds

number

The normalized minutes component of a days and time duration
value. Since the value is normalized, this property must return a
decimal in the interval [0..60). This property returns null when
invoked on a years and months duration value.

Decision Model and Notation 1.3

148

Lists are defined in Table 68.

Table 68: Semantics of lists

Grammar FEEL Mapped to Domain (scope s) Applicability
Rule Syntax
54 eifes] eq[ez] eqis alist and e is an integer (0 scale
number)
54 eirfes] e e4 is not a list and not null and value(e,)
=1
54 eifes] list of items e such thatiisineiffiisin | esis alistand type(FEEL(ez, s")) is
esand FEEL (e, s') is true, where s'is | boolean
the scope s with a special first context
containing the context entry ("item", i)
and if i is a context, the special context
also contains all the context entries of i.
54 esler] [es] if FEEL(e,, s') is true, where s' is e, is not a list and not null and

the scope s with a special first context
containing the context entry ("item", e4)
and if eq is a context, the special
context also contains all the context
entries of e4. Else [].

type(FEEL(e., s")) is boolean

Contexts are defined in Table 69.

Table 69: Semantics of contexts

Grammar Rule

FEEL Syntax

Mapped to Domain (scope s)

57

{ni:e,nz:ey ...}

Decision Model and Notation 1.3

149

Alan Fish, 10/11/19
DMN13-139

{"n" e, "n": ey ..} {"n{": FEEL(e, s1), "n2": FEEL (e, s2), ...} such that the
s; are all s with a special first context ¢; containing a
subset of the entries of this result context. If ¢; contains

the entry for nj, then c; does not contain the entry for n;.

54 les ez ...] [FEEL(es), FEEL(e2), ...]

10.3.2.16 Error Handling

When a built-in function encounters input that is outside its defined domain, the function SHOULD report or log
diagnostic information if appropriate, and SHALL return null.

10.3.3 XML Data

FEEL supports XML Data in the FEEL context by mapping XML Data into the FEEL Semantic Domain. Let XE(e, p) be
a function mapping an XML element e and a parent FEEL context p to a FEEL context , as defined in the following
tables. XE makes use of another mapping function, XV(v), that maps an XML value v to the FEEL semantic domain.

XML namespace semantics are not supported by the mappings. For example, given the namespace prefix declarations
xmins:pl="http://example.org/foobar" and xmins:p2="http://example.org/foobar", the tags p1.myElement and
p2:myElement are the same element using XML namespace semantics but are different using XML without namespace
semantics.

10.3.3.1 Semantic mapping for XML elements (XE)

Table 70, e is the name of an XML element, a is the name of one of its attributes, c is a child element, and v is a value.
The parent context p is initially empty.

Table 70: Semantics of XML elements

XML context entry in p Remark

<e /> "e" : null empty element — null-valued
entry in p

<q:e /> "e" : null namespaces are ignored.

<e>v</e> "e":XV(v) unrepeated element without

attributes

<e>vi</e> <e>v,</e>

"e": [XV(v1), XV(v2)]

repeating element without
attributes

<e a="v"/>
<cr>vi</Cr>
<Ch>Vo</Cr><Cn>V3</Cn>
</e>

"e": {"a": XV(v),
"cq": XV(vy),
"en®: [XV(v2), XV(vs)]

An element containing attributes
or child elements — context

", om

<e a="v,">v,</e>

"e": { "@a": XV(v1), "$content":
XV(v2) }

vz is contained in a generated
$content entry

An entry in the context entry in p column such as "e" : null indicates a context entry with string key "e'" and value null.
The context entries are contained by context p that corresponds to the containing XML element, or to the XML document
itself.

Decision Model and Notation 1.3 150

The mapping does not replace namespace prefixes with the namespace IRIs. FEEL requires only that keys within a
context be distinct, and the namespace prefixes are sufficient.

10.3.3.2 Semantic mapping for XML values (XV)

If an XML document was parsed with a schema, then some atomic values may have a datatype other than string. Table 71
defines how a typed XML value v is mapped to FEEL.

Table 71: Semantics of XML values

Type of v FEEL Semantic Domain
number FEEL(v)

string FEEL("v")

date FEEL(date("v"))
dateTime FEEL(date and time("v"))
time FEEL(time("v"))

duration FEEL(duration("v"))

list, e.g. "vs V" [XV(v1), XV(v2)]
element XE(v)

10.3.3.3 XML example

The following schema and instance are equivalent to the following FEEL:

10.3.3.3.1 schema

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://www.example.org"
targetNamespace="http://www.example.org"
elementFormDefault="qualified">
<xsd:element name="Context">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Employee">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="salary" type="xsd:decimal"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Customer" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="loyalty_level" type="xsd:string"/>
<xsd:element name="credit_limit" type="xsd:decimal"/>

Decision Model and Notation 1.3 151

</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

10.3.3.3.2 instance

<Context xmlIns:tns="http://www.example.org"
xmins="http://www.example.org">
<tns:Employee>
<tns:salary>13000</tns:salary>
</tns:Employee>
<Customer>
<loyalty_level>gold</loyalty_level>
<credit_limit>10000</credit_limit>
</Customer>
<Customer>
<loyalty_level>gold</loyalty_level>
<credit_limit>20000</credit_limit>
</Customer>
<Customer>
<loyalty_level>silver</loyalty_level>
<credit_limit>5000</credit_limit>
</Customer>
</Context>

10.3.3.3.3 equivalent FEEL boxed context

Context

Employee salary 13000
loyalty_level credit_limit
gold 10000

Customer
gold 20000
silver 5000

When a decision model is evaluated, its input data described by an item definition such as an XML Schema element
(clause Error: Reference source not found7.3.2) is bound to case data mapped to the FEEL domain. The case data can be
in various formats, such as XML. We can notate case data as an equivalent boxed context, as above. Decision logic can
reference entries in the context using expressions such as Context.tns$§Employee.tns$salary, which has a value of 13000.

10.3.4 Built-in functions

To promote interoperability, FEEL includes a library of built-in functions. The syntax and semantics of the built-ins are

required for a conformant FEEL implementation.

Decision Model and Notation 1.3

152

In all of the tables in this section, a superscript refers to an additional domain constraint stated in the corresponding
footnote to the table. Whenever a parameter is outside its domain, the result of the built-in is null.

10.3.4.1 Conversion functions

FEEL supports many conversions between values of different types. Of particular importance is the conversion from
strings to dates, times, and durations. There is no literal representation for date, time, or duration. Also, formatted
numbers such as 7,000.00 must be converted from a string by specifying the grouping separator and the decimal

separator.

Built-ins are summarized in Table 72. The first column shows the name and parameters. A question mark (?) denotes an
optional parameter. The second column specifies the domain for the parameters. The parameter domain is specified as one

of

e atype, e.g., number, string

e any — any element from the semantic domain, including null

e ot null — any element from the semantic domain, excluding null.

e date string — a string value in the lexical space of the date datatype specified by XML Schema Part 2 Datatypes

e time string — either

a string value in the lexical space of the time datatype specified by XML Schema Part 2 Datatypes; or
a string value that is the extended form of a local time representation as specified by ISO 8601, followed by the
character "@", followed by a string value that is a time zone identifier in the IANA Time Zones Database

(http://www.iana.org/time-zones)

e date time string — a string value consisting of a date string value, as specified above, optionally followed by the
character "T" followed by a time string value as specified above

e duration string — a string value in the lexical space of the xs:dayTimeDuration or xs:yearMonthDuration
datatypes specified by the XQuery 1.0 and XPath 2.0 Data Model.

Table 72: Semantics of conversion functions

Name(parameters) Parameter Description Example
Domain
date(from) date string convert from to a date date("2012-12-25") — date("2012-12-24") =
duration("P1D")
date(from) date and time convert from to a date date(

(set time components to
null)

date and time("2012-12-25T11:00:002")) =
date("2012-12-25")

date(year, month, day)

year, month, day
are numbers

creates a date from year,
month, day component
values

date(2012, 12, 25) = date("2012-12-25")

date and time(date, time)

date is a date or
date time; time is a
time

creates a date time from
the given date (ignoring
any time component)
and the given time

date and time ("2012-12-24723:59:00") =
date and time (date("2012-12-24"),
time(“23:59:00"))

Decision Model and Notation 1.3

153

Name(parameters)

Parameter
Domain

Description

Example

date and time(from)

date time string

convert from to a date
and time

date and time("2012-12-24T723:59:00") +
duration("PT1M") = date and time("2012-
12-25T700:00:00")

time(from) time string convert from to time time("23:59:00z") + duration("PT2M") =
time("00:01:00@Etc/UTC")
time(from) time, date and time | convert from to time time(

(ignoring date
components)

date and time("2012-12-25T711:00:00Z")) =
time("11:00:00Z")

time(hour, minute,

second, offset E

hour, minute,
second, are
numbers, offset is a
days and time
duration, or null

creates a time from the
given component values

time(“23:59:00z") =
time(23, 59, 0, duration(“PTOH"))

number(from, grouping string’, string, convert from to a number | number("1 000,0", "", "") =
separator, decimal string number("1,000.0", ",", ".")
separator)

string(from) non-null convert from to a string string(1.1) = "1.1"

string(null) = null

duration(from)

duration string

convert from to a days
and time or years and
months duration

date and time("2012-12-24723:59:00") -
date and time("2012-12-22T03:45:00") =
duration("P2DT20H14M")

duration("P2Y2M") = duration("P26M")

years and months
duration(from, to)

both are date or
both are date and
time

return years and months
duration between from
and fo

years and months duration(
date("2011-12-22"), date("2013-08-24")) =
duration("P1Y8M")

1. grouping SHALL be one of space (' '), comma (',"), period ('."), or null.

decimal SHALL be one of period, comma, or null, but SHALL NOT be the same as the grouping separator

unless both are null.

from SHALL conform to grammar rule 37, after removing all occurrences of the grouping separator, if any, and
after changing the decimal separator, if present, to a period.

10.3.4.2 Boolean function

Table 73 defines Boolean functions.

Table 73: Semantics of Boolean functions

Name(parameters) Parameter Description Example
Domain
not(negand) boolean logical negation not(true) = false

not(null) = null

Decision Model and Notation 1.3

154

Alan Fish, 10/11/19
DMN13-175

10.3.4.3 String functions

Table 74 defines string functions.

Table 74: Semantics of string functions

Parameter
Domain

Name(parameters)

Description

Example

substring(string, start string, number"

position, length?)

return length (or all)
characters in string,
starting at start position.
1%t position is 1, last
position is -1

substring("foobar",3) = "obar"
substring("foobar",3,3) = "oba"
substring("foobar”, -2, 1) = "a"

string length(string) string string length("foo") = BE
upper case(string) string return uppercased string | upper case("aBc4") = "ABC4"
lower case(string) string return lowercased string | lower case("aBc4") = "abc4"

substring before
(string, match)

string, string

return substring of string
before the match in
string

substring before("foobar”, "bar") = "foo"

"nom "

substring before("foobar", "xyz") =

substring after
(string, match)

string, string

return substring of string
after the match in string

substring after("foobar”, "ob") = "ar"
substring after("", "a") = ™"

replace(input, pattern, string? regular expression replace("abcd", "(ab)|(a)", "[1=$1][2=$2]") =
replacement, flags?) pattern matching and "[1=ab][2=]cd"
replacement
contains(string, match) string does the string contain contains("foobar”, "of") = false
the match?
starts with(string, match) string does the string start with | starts with("foobar”, "fo") = true
the match?
ends with(string, match) string does the string end with ends with("foobar”, "r") = true
the match?
matches(input, pattern, string? does the input match the | matches("foobar”, "fo*b") = true

flags?)

regexp pattern?

split(string, delimiter) string is a string,

delimiter is a

Splits the string into a list
of substrings, breaking at

split(“John Doe”, “\\s”) = [“John”, “Doe’]
split(“abic:”, 7) = [a", ", "]

pattern? each occurrence of the
delimiter pattern.
1. start position must be a non-zero integer (0 scale number) in the range [-L..L], where L is the length of the

string. length must be in the range [1..E], where E is L — start position + 1 if start position is positive,

and —start position otherwise.

Decision Model and Notation 1.3

155

Alan Fish, 10/08/19
DMN13-127
Note: special character may be wrong

2. pattern, replacement, and flags SHALL conform to the syntax and constraints specified in clause 7.6 of XQuery
1.0 and XPath 2.0 Functions and Operators. Note that where XPath specifies an error result, FEEL specifies a

null result.

10.3.4.4 List functions

Table 75 defines list functions.

Table 75: Semantics of list functions

Name(parameters)

Parameter
Domain

Description

Example

list contains(list, element)

list, any element of
the semantic
domain including
null

does the list contain the element?

list contains([1,2,3], 2) = true

count(/ist) list return size of list, or zero if list is count([1,2,3]) =3
empty count([]) =0
count([1,[2,3]]) = 2
min(list) non-empy list of return minimum(maximum) item, or min([1,2,3]) = 1
min(cy, ..., cn), N >0 comparable items null if list is empty max(1,2,3) = 3
max(/ist) or argument list of min(1) = min([1]) = 1

max(cs, ..., tn), N >0

one or more
comparable items

max([]) = null

sum(list)
sum(ny, ..., hy), N >0

list of 0 or more
numbers or
argument list of
one or more
numbers

return sum of numbers, or null if list
is empty

sum([1,2,3])) = 6
sum(1,2,3) =6
sum(1) =1
sum([]) = null

mean(list)
mean(ny, ..., ny), N >0

non-empty list of
numbers or
argument list of
one or more
numbers

return arithmetic mean (average) of
numbers

mean([1,2,3]) = 2
mean(1,2,3) =2
mean(1) =1
mean([]) = null

all(list)
all(bs, ..., b), N >0

list of Boolean
items or argument
list of one or more
Boolean items

return false if any item is false, else
true if empty or all items are true,
else null

all([false,null,true]) = false
all(true) = all([true]) = true
all([]) = true
all(0) = null

any(list)
any(by,..., bn), N>0

list of Boolean
items or argument
list of one or more
Boolean items

return true if any item is true, else
false if empty or all items are false,
else null

any([false,null,true]) = true
any(false) = false

any([]) = false

any(0) = null

sublist(list, start position,
length?)

list, number’,
number?

return list of length (or all) elements
of list, starting with list[start position].
1t position is 1, last position is -1

sublist([4,5,6], 1, 2) = [4,5]

append(list, item...)

list, any element
including null

return new list with items appended

append([1], 2, 3) =[1,2,3]

Decision Model and Notation 1.3

156

Name(parameters) Parameter Description Example
Domain
concatenate(/ist...) list return new list that is a concatenate([1,2],[3]) =[1,2,3]

concatenation of the arguments

insert before(list, position,
newltem)

list, number', any
element including
null

return new list with newltem inserted
at position

insert before([1,3],1,2) = [2,1,3]

remove(list, position)

list, number’

list with item at position removed

remove([1,2,3], 2) = [1,3]

reverse(list)

list

reverse the list

reverse([1,2,3]) = [3,2,1]

index of(list, match)

list, any element

return ascending list of list positions

index of([1,2,3,2],2) = [2,4]

including null containing match
union(/ist...) list concatenate with duplicate removal union([1,2],[2,3]) = [1,2,3]
distinct values(/ist) list duplicate removal distinct values([1,2,3,2,1] =
[1,2,3]
flatten(/ist) list flatten nested lists flatten([[1,2],[[3]], 4]) =[1,2,3,4]

product(list)
product(Ny, ooss nn)

list is a list of
numbers. ng...n

are numbers.

Returns the product of the numbers

product(2, 3, 4) = 24

median(list)

listis a list of

Returns the median element of the

median(8,2,5,3,4)=4

median(ng .., N,) number. ng...n, list of numbers. l.e., after sorting the
are numbers. list, if the list has an odd number of E
elements, it returns the middle
element. If the list has an even
number of elements, returns the
average of the two middle elements.
If the list is empty, returns null.
stddev(list) list is a list of Returns the stddev(2,4,7,5) =
stddev(n, ..., n,) number. n, ... n, of the list of numbers. If
are numbers. the listis empty =
returns null.
mode(list) listis a list of Returns the mode of the list of mode(6,3,9,6,6)=[6]
mode(ng .., n,) number. ng...n, numbers. If the result contains
are numbers. multiple elements, they are returned E
in ascending order. If the list is
empty, an empty list is returned.
1. position must be a non-zero integer (0 scale number) in the range [-L..L], where L is the length of the list
2. length must be in the range [1..E], where E is L — start position + 1 if start position is positive,

and —start position otherwise.

Decision Model and Notation 1.3

157

Alan Fish, 04/30/19
Editorial (formatting only)

Alan Fish, 04/30/19
DMN13-131

Alan Fish, 04/30/19
Editorial (formatting only)

10.3.4.5 Numeric functions

Table 76 defines numeric functions.

Table 76: Semantics of numeric functions

Name(parameters) | Parameter Domain Description Example

decimal(n, scale) number, number’ return n with given scale decimal(1/3, 2) = .33
decimal(1.5, 0) = 2
decimal(2.5, 0) = 2

Decision Model and Notation 1.3

158

Name(parameters) | Parameter Domain Description Example

floor(n) number return greatest integer <= n floor(1.5) =1
floor(-1.5) = -2

ceiling(n) number return smallest integer >= n ceiling(1.5) = 2
ceiling(-1.5) = -1

abs(n) n is a number, a days and Returns the absolute value of abs(10)=10(=

abs{-number)- time duration or a year and n. Returns-the-abselute-value- abs(-10 10 -

. . (-10) =

month duration Aumberis-a-
number.

of-the-given-number—

abs(@’PT5H”) = @ PT5H”
abs(@’-PT5H’) = @"PT5H”.
abs{-16)=10
abs(—16-)=16-

modulo(dividend,
divisor)

dividend and divisor are
numbers. where divisor must
not be 0 (zero). Returns the
remainder of the division of
dividend by divisor. In case
either dividend or divisor is
negative, the result has the
same sign of the divisor. The
modulo function can be
expressed as follows:

vidend,

modulo (di

Returns the remainder of the
division of dividend by divisor.

modulo(12,5) =2
modulo(-12,5)= 3
modulo(12,-5)= -3
modulo(-12,-5)= -2
modulo(10.1, 4.5)= 1.1
modulo(-10.1, 4.5)= 3.4
modulo(10.1, -4.5)= -3.4
modulo(-10.1, -4.5)= -1.1

sqrt(number)

number is a number.

Returns the square root of the
given number. If number is
negative it returns null.

sqri(16) =4

log(number)

number is a number

Returns the natural logarithm
(base e) of the number
parameter.

log(10) = 2.30258509299

exp(number)

number is a number

Returns the Euler's number e

raised to the power of number.

exp(5)=148.413159102577

odd(number)

number is a number

Returns true if number is odd,
false if it is even.

odd(5) =true
odd(2) =false

even(number)

number is a number

Returns true if number is
even, false if it is odd.

even(5) = false
even (2) = true

1. Scale is in the range [-6111..6176]

10.3.4.6 Date and time functions

Table 77 defines date and time functions.

Decision Model and Notation 1.3

159

Alan Fish, 04/30/19
DMN13-125

Alan Fish, 10/11/19
DMN13-139

\ Table 77: Date and time functions

Name(parameters) Parameter Domain Description Example
is(valuei, value,) Both are elements of the D Returns true if both values is(date("2012-12-25"),

are the same element in the |time("23:00:50”)) is false
FEEL semantic domain D is(date("2012-12-25").

(4 " " H
see 10.3.2.7 date("2012-12-25") is true

is(time("23:00:50z"),
time("23:00:50”)) is false
is(time("23:00:50z"),
time("23:00:50+00:00”)) is
false

El

| 10.3.4.7 Range Functions

The following set of functions establish relationships between single scalar values and ranges of such values. All
functions in this list take two arguments and return True if the relationship between the argument holds, or False
otherwise.

The specification of these functions is heavily inspired by the equivalent functions in the HL.7 CQL (Clinical Quality
Language) standard version 1.4.

The following table intuitively depicts the relationships defined by the functions in this chapter, but the full semantics of
the functions are listed in Table