September 2017

- ®
- |
— = é
= el = =
E—/E ==
== =" Sl =
= ’/ )

OBJECT MANAGEMENT GROUP®

Decision Model and Notation
Version 1.2 DRAFT (ballot 9)

OMG Document Number: formal/2016-06-01
Standard document URL: http://www.omg.org/spec/DMN/1.1

Normative Machine Consumable File(s):
http://www.omg.org/spec/DMN/20151101/dmn.xmi
http://www.omg.org/spec/DMN/20151101/dmn.xsd

Informative Machine Consumable File(s):

http://www.omg.org/spec/DMN/20151101/ch11example.xml



http://www.omg.org/spec/ASCMM/20141211/AutomatedSourceCodeMaintainabilityMeasure
http://www.omg.org/spec/ASCMM/20141211/AutomatedSourceCodeMaintainabilityMeasure
http://www.omg.org/spec/ASCMM/20141211/AutomatedSourceCodeMaintainabilityMeasure
http://www.omg.org/spec/DMN/20151101/dmn.xsd
http://www.omg.org/spec/DMN/20151101/dmn.xsd
http://www.omg.org/spec/ASCMM/20141211/AutomatedSourceCodeMaintainabilityMeasure

Copyright © 2013, Decision Management Solutions

Copyright © 2013, Escape Velocity LLC

Copyright © 2013, Fair Isaac Corporation

Copyright © 2013, International Business Machines Corporation
Copyright © 2013, Knowledge Partners International

Copyright © 2013, KU Leuven

Copyright © 2013, Model Systems Limited

Copyright © 2013, Oracle Incorporated

Copyright © 2013, TIBCO Software Inc.

Copyright © 2016, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or

Decision Model and Notation 1.1 2



mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, [IOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®,
and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

Decision Model and Notation 1.1 3


http://www.omg.org/legal/tm_list.htm

OMG'’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
on the main web page http://www.omg.org, under Documents, Report a Bug/Issue.

Decision Model and Notation 1.1 4


http://www.omg.org/

Contents

2.1 Conformance levels 12

2.2 General conformance requirement 12

2.2.1 VISUQAL QDPEATAIICE. ....urreeeeeeesseesseeseesseessssessesssesssesssesssessssesssessss s s ssss s s e s s bbbt 12
2.2.2 DECISION SEIMANTICS ..ueuiureureeresresressessessessessessessessessessessessessessessessessessessessessessessessessessessessessessessessessessessesssssessessessenses 13
2.2.3 Attributes and mMOdel aSSOCIAtIONS. ... see e s s ses s s sa s 13
B3 2T =) =) 1 Lo 14

3.1 Normative 14
3.2 Non-normative 15

4 Additional Information...... s ————————————————— 17
4.1 Acknowledgements 17

4.2 IPR and Patents 17
4.3 Guide to the Specification 17
5 Introduction to DMN.......ccimmmmmmmssssssssssssssss s 19
5.1 Context 19
5.2 Scope and uses of DMN 22
5.2.1 Modeling human deciSion-MaKINg......cccuuerenrerreeneereennessesnsesseseesssessessesssessessssssesssssssssesssesssssssesssssssesssseases 22
5.2.2 Modeling requirements for automated deciSion-makKing........ceeneenmeenseensseseeseesseeessesseesssessneenes 22
5.2.3 Implementing automated deciSion-MakKiNg.......c e seesseessessessesssessssesseesssssssssseens 23
5.2.4 Combining applications 0f MOAEIiNG ... ssses s sessse s sees 23
5.3 Basic concepts 24
5.3.1 DeCiSion reqUIr€mMeNnts IEVEL ... sssssssssssssssssssssssssssssssssssssssssssssssssssssssssnes 24
T T/ D 1=To3 13 1o o T8 Ua Y oa Uoll U= ) PP 26
5.3.3 DIBCISION SEIVICES...cuuieuriurierreureeseesseteessesseesses s bbb s s s s bR R £ s R £ E eSS E bR R et nb bbb 27
6 Requirements (DRG and DRD)....ccoismmssmsmsmmssmssssssmsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssassess 31
6.1 Introduction 31
6.2 Notation 31
6.2.1 DRD EIEITENES. ..ceuucureueeneesseesseessesssesssesssesssesssesssss s sssesss s sssasssasssesssesssss s s sss s sssesssasssessssssssssssssnssssanes 32
6.2.2 DRD REQUITEIMENTS.....couceeereeuereesesseessessesssessesssesssessessesssesse s ssssesses s ssssssssssssssssssessessssssssssessssssssssssnensssssssnes 34
6.2.3 CONMECTION TULES....ctieueueierereessetreessessessesssesesssessses s sss e ss s s b s s a e s ae bbb s bbb bbb s 36

Decision Model and Notation 1.1 5



6.2.4 Partial views and hidden iNformMatioN. .. ssssssssssessssssssssssssssssssssssssens 37

6.2.5 DECISION SEIVICE .uririeuirresresssassesssssessssssssssssss s sssssss s esss s s ssss s s ssss st s sse s s bbb 37
6.3 Metamodel 38
6.3.1 DMN Element MeEtamMOAel.......oeeeeereireeseiseisessessessesssessessessssssssssssssesssssse s sssssssssss s st ssases 38
6.3.2 Definitions MEtaAMOAEL........oeie et ss bbb e 40
LSS TRC T 050Y 070) ol o0 T=] 7 U o Lo T =) US0E PP 42
6.3.4 Element Collection Metamodel........ s sessse s sssss s s ssssssss s snens 43
6.3.5 DRG Element MetamOdel.. ...t sssessssssss s s ssesss s sssssssssssss st st sessssssssanes 43
6.3.6 Artifact METAIMOAEL.....cce ettt e s s s s bbb s s 44
6.3.7 DeCiSion MEtAMOUEL. .. s s s bbb s 45
6.3.8 Business Context Element MetamoOdel. ... riereineneeneesessisessssssssessssss s ssssssssssssssssssssesssssseass 47
6.3.9 Business Knowledge Model Metamodel..........o e iessssssessssssssssesssssesssssssssssssssssssenss 49
6.3.10 Input Data MEtamMOAEl. ..o s s 51
6.3.11 Knowledge Source MetamOdel. ... eeerreesneeeseessersessesssessseesssesesssssssesssssssssssesssesssasssessssssssssssssesssens 52
6.3.12 Information Requirement Metamodel........cueeeenereeseesseesseesseesssesssesseesseessssssesssesssessssesssssessessessessenns 53
6.3.13 Knowledge Requirement MetamoOdel.......ceneereenreuneineesseeeesseesesssesssssesssssssssessessesesesssssssssssssesssseass 54
6.3.14 Authority Requirement metamodel......ssssssssssssssssssssssssssssssssssssas 54
6.3.15 Decision Service MetamMOAEl. ... ssas s 55
6.3.16 EXEENSIDILIEY coueeueeseemeeseessees s seeseeseessessessseess s s s senssess s s s s s e 56
6.4 Examples 57
7 Relating Decision Logic to Decision ReqUirements..........oucummsmssssmssssmssssssssssssssssssssssssssesssas 59

7.1 Introduction 59

7.2 Notation 61
A2 B 254 0] 5] () 0 PO 61
7.2.2 BOXE [ITOIal @XPIESSION. ...ceuieeceeecreerrerseesseessesesssessseessensses s sees s ss s e s s s s een s 62
7.2.3 BOXEA INVOCATION ... tuuieuretreeureeseisesseeseesseesetsse s sss s sssessessse s s s s s a bR s E et eb bbb es 63

7.3 Metamodel 63

7.3.1 EXpression MetamMOAEL....oiicssssssssssssssssss s ssssssssssssssssssssssssssssssssssssssssssssssssssassssssssssssssssssssas 64

7.3.2 ItemDefinition MetamMOEl. ...t s s 65

7.3.3 InformationItem MeEtamMOAE.. ...ttt e s s e 67

8 DeCiSION TabIe.....coiciiicissnsnssss s R 71
8.1 Introduction 71
8.2 Notation 72

8.2.1 LINE SLYIE ANA COLOT . cuuiuiuienritreereeseiseseeeceseesessesssesse b eesseesssse s ssse s b s s bbbt s bbbt es 73

Decision Model and Notation 1.1 6



LS T2 =1 o) (=30} i 1<) 01 = L (0} s VAT 73

8.2.3 INPUL @XPTESSIONS. covuveureruererseesrerseesseresssesseesses s ssesss s esse s sesssesses s s s s s s s e R R s e 76
8.2.4 INPUL VAlUES... . eureeeereereeecersersesssessseessesseessess s s s ss e s s s s 76
8.2.5 Information Item names, output labels, and output component NAMES........cceereereereenresrereereeesennens 76
8.2.6 MUILIPIE OULPULS ... ceirresisesrssisssssssssssss ettt s s st s bbb e 76
8.2.7 INPUL NS  civueerrucesrireesreeeesre et s es s sees s e s e s s s s s R R R AR a s 78
8.2.8 Merged INPUL ENLIY CEIIS...cmerererrererseesees s seer s ss s esss s s s e s s ssse s 78
Lo 00 D10 L) 0 T 79
B.2. 10 Hit POLICY ceueurerueemereemreereessessesssesssessessesssessessses e ssses e s e s s R AR e e 80
8.2.11 Default OULPUL VALUES ... ceuiereeereesreesseesseesseesseeeseesssessss e sssesssessseessesssss s sssesss s s sssass st sesssssssssssssssssssessssns 82
8.3 Metamodel 82
8.3.1 Decision Table MetamOdel........oe s 82
8.3.2 Decision Table Input and Output MetamoOdel.......c.ceeirisrenensiseneseee s 84
8.3.3 Decision Rule MEtamMOAEL. ... sssssss st sssssssssssssssssssssssssssssssssssssssssses 85
8.4 Examples 86
9 Simple Expression Language (S-FEEL)........cccinmmmmmsssssssssssssssssssssssssns 91

9.1 Introduction 91

9.2 S-FEEL syntax 91

9.3 S-FEEL data types 92

9.4 S-FEEL semantics 93

9.5 Use of S-FEEL expressions 94

O.5.1 TEEIM A@fiNItIONS. cieuuieueueeereeseeset ettt ee et es b s e s e bbb s bR s bbb 94
0.5.2 INVOCALIONS. cccurtuueuereessesseessessesssessessessesssessesssess s es s s s bR R R £ SRR AR R R e SRR R R s bR 94
LS TSTC 20 B 1T U] (0] T8 L] U=T- 3PP 94
10 Expression Language (FEEL).....cccommmmnmmmsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssasssss 95

10.1 Introduction 95
10.2 Notation 95

10.2.1 BOXEA EXPIESSIONS cuiuuririressesessssmssssssesssssssssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssassssssssssssssssssssssssnssssnssssns 95

110.2.2 FEEL.uuretinetsseeseeseesssesssesssesseessssssesssssssssssesssssssesssesssesssesssesssessssssssesssssssssssssssesssasssessssssssssasssesssesssnsssnsssnsssnsssnsssnses 102
10.3 Full FEEL Syntax and Semantics 103

00 ) 7 41 7= <R 104
Symbol S is defined in terms of symbol S; 104

110.3.2 SEIMANTICS . ceueurereeeeseeseeerseessssesessssssssesssssssssssssesssssesssssssesssssessssssssesssssessssssssssssssessssssssssssssesssssessessnssessssessnsnssessens 108

110.3.3 XML DAL cuueueeereeereeeseeseiseassesssessseessessseesseessssssssssse s sssasssessssssssssssssssssssesaseass e sssasssesssessssssssssssssasesssesssssssesas 127

Decision Model and Notation 1.1 7



ORI N 5000 L o N0 00 0 Lod 0 (o ) o - 129

10.4 Execution Semantics of Decision Services 135

10.4.1 CONLEXt MELAMOAEL.. ..ottt ettt es bbb s bbbt bbbt 137
10.4.2 ConteXtENtry MEtAMOAEL. ..ottt ss s s e et see s 138
10.4.3 FunctionDefinition MetamOdel. ... sssess s ssssssssss s sssssssesssesssssssssssssssses 138
10.4.4 LiSt MELAIMOUEL ... sses s sssss s s s s s s s s s s 139
10.4.5 Relation MEtamOAEL... ..ot s 139
10.5 Examples 139
00T T80 00} 4 1= PSPPSR 139
0TS T0Z 051 Uot 11 - U o) o F00E PO 140
R 0 0 0 VOO 140
10.5.4 SUM ENEIIES OF @ LISt uuieuieiereeeeece sttt s b s s s s e s e b bbbt 141
10.5.5 Invocation of user-defined PMT fUNCHON. ... reieriemeeereeeseeeseesseisseessesseessesssesssesssesssesssssssessssssessesnees 141
10.5.6 Sum weights of recent Credit NiStOrY ... sessesees 141
10.5.7 Determine if credit history contain a bankruptCy eVent......ereemeeseesseesseessessessessessessenes 141
11 DMN EXQIMPIE...uiiisniursnisnsusssssmsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssassssssssssnsssssssnssnsssnssasssssssnssas 143
11.1 Introduction 143
11.2 The business process model 143
11.3 The decision requirements level 144
11.5 Executing the Decision Model 158
12 EXChange fOrmats......oummmmmssmsmmsmssssssssssssssssssssss s ssssssssss s s ssss s sssssssss s e sssssssssas e s 161

12.1 Interchanging Incomplete Models 161

12.2 Machine Readable Files 161

12.3XSD 161
12.3.1 DOCUIMENT STTUCEUTE....cceeecescerereeseesesseesessessessessessesssssessesssssssssssessessessesssssessessessessessessessessessessessessessessessssesensss 161
12.3.2 References within the DMN XSD..... st sssssssssssessssssssssssssssssssssssssssseeassnes 161

Decision Model and Notation 1.1 8



Preface
OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

http://www.omg.org/spec.

Specifications are organized by the following categories:
Business Modeling Specifications

Middleware Specifications
* CORBA/IIOP
» Data Distribution Services
* Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
* UML, MOF, CWM, XMI
* UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
* CORBAServices
* CORBAFacilities

Decision Model and Notation 1.1 9


http://www.omg.org/

OMG Domain Specifications
CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org.

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier/Courier New - 10 pt. Bold: Programming language elements.

Courier - 12 pt.: Name of modeling element (class or association)

Arial — 12pt.: syntax element.

Arial — 10 pt.: Examples and non-normative remarks

Helvetica/Arial - 10 pt: Exceptions

Decision Model and Notation 1.1 10



1 Scope

The primary goal of DMN is to provide a common notation that is readily understandable by all business users, from the
business analysts needing to create initial decision requirements and then more detailed decision models, to the technical
developers responsible for automating the decisions in processes, and finally, to the business people who will manage and
monitor those decisions. DMN creates a standardized bridge for the gap between the business decision design and
decision implementation. DMN notation is designed to be useable alongside the standard BPMN business process
notation.

Another goal is to ensure that decision models are interchangeable across organizations via an XML representation.

The authors have brought forth expertise and experience from the existing decision modeling community and have sought
to consolidate the common ideas from these divergent notations into a single standard notation.

Decision Model and Notation 1.1 11



2 Conformance

2.1 Conformance levels

Software may claim compliance or conformance with DMN 1.1 if and only if the software fully matches the applicable
compliance points as stated in the specification. Software developed only partially matching the applicable compliance
points may claim that the software was based on this specification, but may not claim compliance or conformance with
this specification.

The specification defines three levels of conformance, namely Conformance Level 1, Conformance Level 2 and
Conformance Level 3.

An implementation claiming conformance to Conformance Level 1 is not required to support Conformance Level 2 or
Conformance Level 3. An implementation claiming conformance to Conformance Level 2 is not required to support
Conformance Level 3.

An implementation claiming conformance to Conformance Level 1 SHALL comply with all of the specifications set
forth in clauses 6 (Decision Requirements), 7 (Decision Logic) and 8 (Decision Table) of this document. An
implementation claiming conformance to Conformance Level 1 is never required to interpret expressions (modeled as an
Expression elements) in decision models. However, to the extent that an implementation claiming conformance to
Conformance Level 1 provides an interpretation to an expression, that interpretation SHALL be consistent with the
semantics of expressions as specified in clause 7.

An implementation claiming conformance to Conformance Level 2 SHALL comply with all of the specifications set
forth in clauses 6 (Decision Requirements), 7 (Decision Logic) and 8 (Decision Table) of this document. In addition it is
required to interpret expressions in the simple expression language (S-FEEL) specified in clause 9.

An implementation claiming conformance to Conformance Level 3 SHALL comply with all of the specifications set
forth in clauses 6 (Decision Requirements), 7 (Decision Logic), 8 (Decision Table) and 10 (Expression language) of this
document. Notice that the simple expression language that is specified in clause 9 is a subset of FEEL, and that,
therefore, an implementation claiming conformance to Conformance Level 3 can also claim conformance to Conformance
Level 2 (and to Conformance Level 1).

In addition, an implementation claiming conformance to any of the three DMN 1.1 conformance levels SHALL comply
with all of the requirements set forth in Clause 2.2.

2.2 General conformance requirement

2.2.1 Visual appearance

A key element of DMN is the choice of shapes and icons used for the graphical elements identified in this specification.
The intent is to create a standard visual language that all decision modelers will recognize and understand. An
implementation that creates and displays decision model diagrams SHALL use the graphical elements, shapes, and
markers illustrated in this specification.

There is flexibility in the size, color, line style, and text positions of the defined graphical elements, except where
otherwise specified.

The following extensions to a DMN Diagram are permitted:

e New markers or indicators MAY be added to the specified graphical elements. These markers or indicators could
be used to highlight a specific attribute of a DMN element or to represent a new subtype of the corresponding
concept.

e A new shape representing a new kind of artifact MAY be added to a Diagram, but the new shape SHALL NOT
conflict with the shape specified for any other DMN element or marker.

e Graphical elements MAY be colored, and the coloring may have specified semantics that extend the information
conveyed by the element as specified in this standard.

Decision Model and Notation 1.1 12



e The line style of a graphical element MAY be changed, but that change SHALL NOT conflict with any other
line style required by this specification.

An extension SHALL NOT change the specified shape of a defined graphical element or marker (e.g., changing a dashed
line into a plain line, changing a square into a triangle, or changing rounded corners into squared corners).

2.2.2 Decision semantics

This specification defines many semantic concepts used in defining decisions and associates them with graphical
elements, markers, and connections.

To the extent that an implementation provides an interpretation of some DMN diagram element as a semantic
specification of the associated concept, the interpretation SHALL be consistent with the semantic interpretation herein
specified.

2.2.3 Attributes and model associations

This specification defines a number of attributes and properties of the semantic elements represented by the graphical
elements, markers, and connections. Some attributes are specified as mandatory, but have no representation or only
optional representation. And some attributes are specified as optional.

For every attribute or property that is specified as mandatory, a conforming implementation SHALL provide some
mechanism by which values of that attribute or property can be created and displayed. This mechanism SHALL permit
the user to create or view these values for each DMN element specified to have that attribute or property.

Where a graphical representation for that attribute or property is specified as required, that graphical representation
SHALL be used. Where a graphical representation for that attribute or property is specified as optional, the
implementation MAY use either a graphical representation or some other mechanism.

If a graphical representation is used, it SHALL be the representation specified. Where no graphical representation for that
attribute or property is specified, the implementation MAY use either a graphical representation or some other
mechanism. If a graphical representation is used, it SHALL NOT conflict with the specified graphical representation of
any other DMN element.

Decision Model and Notation 1.1 13



3 References

3.1 Normative
BMM

e Business Motivation Model (BMM),Version 1.2, OMG Document number: formal/2014-05-01, May 2014
http://www.omg.org/spec/BMM/1.2

BPMN 2.0

e  Business Process Model and Notation, version 2.0, OMG Document Number: formal/2011-01-03, January 2011
http://www.omg.org/spec/BPMN/2.0

IEEE 754

o [EEE 754-2008, IEEE Standard for Floating-Point Arithmetic, International Electrical and Electronics
Engineering Society, December, 2008
http://www.techstreet.com/ieee/searches/5835853

ISO 8601

e ISO 8601:2004, Data elements and interchange formats -- Information interchange -- Representation of dates
and times, International Organization for Standardization, 2004
http://www.iso.org/iso/home/store/catalogue_tc/catalogue detail.htm?csnumber=40874

ISO EBNF

o ISO/IEC 14977:1996, Information technology -- Syntactic metalanguage -- Extended BNF, International
Organization for Standardization, 1996
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153 ISO IEC 14977 1996(E).zip

Java

e The Java Language Specification, Java SE 7 Edition, Oracle Corporation, February 2013
http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf

PMML

e  Predictive Model Markup Language (PMML), Data Mining Group, May, 2014
http://www.dmg.org/v4-2-1/GeneralStructure.html

RFC 3986

e  RFC 3986: Uniform Resource Identifier (URI): Generic Syntax. Berners-Lee, T., Fielding, R., and Masinter, L,
editors. Internet Engineering Task Force, 2005. http://www.ietf.org/rfc/rfc3986.txt

UML

e  Unified Modeling Language (UML), v2.4.1, OMG Document Number formal/2011-08-05, August 2011
http://www.omg.org/spec/UML/2.4.1

Decision Model and Notation 1.1 14


http://www.omg.org/spec/UML/2.4.1
http://www.ietf.org/rfc/rfc3986.txt
http://www.dmg.org/v4-2-1/GeneralStructure.html
http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=40874
http://www.techstreet.com/ieee/searches/5835853
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BMM/1.2

XBASE
e XML Base (Second Edition). Jonathan Marsh and Richard Tobin, editors. World Wide Web Consortium, 2009.
http://www.w3.org/TR/xmlbase/
XML

o  FExtensible Markup Language (XML) 1.0 (Fifth Edition), W3C Recommendation 26 November 2008
http://www.w3.org/TR/xml/

XML Schema

e XML Schema Part 2: Datatypes Second Edition, W3C Recommendation 28 October 2004
http://www.w3.org/TR/xmlschema-2/

XPath Data Model

e XQuery 1.0 and XPath 2.0 Data Model (XDM) (Second Edition), W3C Recommendation 14 December 2010
http://www.w3.org/TR/xpath-datamodel/

XQuery and XPath Functions and Operators

o  XQuery 1.0 and XPath 2.0 Functions and Operators (Second Edition), W3C Recommendation 14
December 2010
http://www.w3.org/TR/xpath-functions/XQuery

3.2 Non-normative

JSON

e  ECMA-404 The JSON Data Interchange Standard, European Computer Manufacturers Association, October,
2013
http://www.ecma-international.org/publications/files’  ECMA-ST/ECMA-404.pdf

PRR

e Production Rule Representation (PRR), Version 1.0, December 2009, OMG document number formal/2009-12-
01
http://www.omg.org/spec/PRR/1.0/

RIF

e  RIF production rule dialect, Ch. de Sainte Marie et al. (Eds.) , W3C Recommendation, 22 June 2010.
http://www.w3.org/TR/rif-prd/

SBVR

o  Semantics of Business Vocabulary and Business Rules (SBVR), V1.2, OMG document number formal/2013-11-
04, November 2013
http://www.omg.org/spec/SBVR/1.2/

Decision Model and Notation 1.1 15


http://www.omg.org/spec/SBVR/1.2/
http://www.w3.org/TR/rif-prd/
http://www.omg.org/spec/PRR/1.0/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.w3.org/TR/xpath-functions/XQuery
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/xmlbase/

SQL

e ISO/IEC 9075-11:2011, Information technology -- Database languages -- SOL -- Part 11: Information and
Definition Schemas (SQL/Schemata), International Organization for Standardization, 2011
http://www.iso.org/iso/home/store/catalogue_tc/catalogue detail.htm?csnumber=5368

XPath

o XML Path Language (XPath) Version 1.0, W3C Recommendation 16 November 1999
http://www.w3.org/TR/xpath

Decision Model and Notation 1.1

16


http://www.w3.org/TR/xpath
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=5368

4 Additional Information

4.1 Acknowledgements
The following companies submitted version 1.0 of this specification:
e Decision Management Solutions
e Escape Velocity
e TFICO
e International Business Machines
e Oracle
The following companies supported this specification:
e KU Leuven
e Knowledge Partners International
e  Model Systems
e TIBCO

The following persons were members of the core team that contributed to the content specification: Martin Chapman, Bob
Daniel, Alan Fish, Larry Goldberg, John Hall, Barbara von Halle, Gary Hallmark, Dave Ings, Christian de Sainte Marie,
James Taylor, Jan Vanthienen, Paul Vincent.

In addition, the following persons contributed valuable ideas and feedback that improved the content and the quality of
this specification: Bas Janssen, Robert Lario, Pete Rivett.

Version 1.1 was developed by the following persons and companies: Elie Abi-Lahoud, University College Cork; Justin
Brunt, TIBCO; Alan Fish, FICO; John Hall, Rule ML Initiative; Denis Gagne, Trisotech; Gary Hallmark, Oracle; Elisa
Kendall, Thematix Partners LLC; Manfred Koethe, 88solutions; Falko Menge, Camunda Services GmbH; Zbigniew
Misiak, BOC Information Technologies Consulting; Sjir Nijssen, PNA Group; Mihail Popov, MITRE; Pete Rivett,
Adaptive; Bruce Silver, Bruce Silver Associates; Bastian Steinert, Signavio GmbH; Tim Stephenson, Omny Link;
James Taylor, Decision Management Solutions; Jan Vanthienen, K.U. Leuven; Paul Vincent, Knowledge Partners, Inc.

4.2 IPR and Patents

The submitters contributed this work to OMG on a RF on RAND basis.

4.3 Guide to the Specification
Clause 1 summarizes the goals of the specification.

Clause 2 defines three levels of conformance with the specification: Conformance Level 1, Conformance Level 2 and
Conformance Level 3.

Clause 3 lists normative references.
Clause 4 provides additional information useful in understanding the background to and structure of the specification.

Clause 5 discusses the scope and uses of DMN and introduces the principal concepts, including the two levels of DMN:
the decision requirements level and the decision logic level.

Clause 6 defines the decision requirements level of DMN: the Decision Requirements Graph (DRG) and its notation as a
Decision Requirements Diagram (DRD).

Decision Model and Notation 1.1 17



Clause 7 introduces the principles by which decision logic may be associated with elements in a DRG: i.e. how the
decision requirements level and decision logic level are related to each other.

Clauses 8, 9 and 10 then define the decision logic level of DMN:
e Clause 8 defines the notation and syntax of Decision Tables in DMN
e Clause 9 defines S-FEEL: a subset of FEEL to support decision tables

e Clause 10 defines the full syntax and semantics of FEEL: the default expression language used for the Decision
Logic level of DMN.

Clause 11 provides an example of DMN used to model human and automated decision-making in a simple business
process.

Clause 12 addresses exchange formats and provides references to machine-readable files (XSD and XMI).
The Annexes provide non-normative background information:
e Annex A. discusses the relationship between DMN and BPMN

e  provides a glossary of terms.

Decision Model and Notation 1.1 18



5 Introduction to DMN
5.1 Context

The purpose of DMN is to provide the constructs that are needed to model decisions, so that organizational decision-
making can be readily depicted in diagrams, accurately defined by business analysts, and (optionally) automated.

Decision-making is addressed from two different perspectives by existing modeling standards:

e Business process models (e.g. BPMN) can describe the coordination of decision-making within business
processes by defining specific tasks or activities within which the decision-making takes place.

e Decision logic (e.g. PRR, PMML) can define the specific logic used to make individual decisions, for example
as business rules, decision tables, or executable analytic models.

However, a number of authors (including members of the submission team) have observed that decision-making has an
internal structure which is not conveniently captured in either of these modeling perspectives. Our intention is that DMN
will provide a third perspective — the Decision Requirements Diagram — forming a bridge between business process
models and decision logic models:

e Business process models will define tasks within business processes where decision-making is required to occur

e Decision Requirements Diagrams will define the decisions to be made in those tasks, their interrelationships, and
their requirements for decision logic

e Decision logic will define the required decisions in sufficient detail to allow validation and/or automation.

Taken together, Decision Requirements Diagrams and decision logic can provide a complete decision model which
complements a business process model by specifying in detail the decision-making carried out in process tasks. The
relationships between these three aspects of modeling are shown in Figure 5.1.

Decision Model and Notation 1.1 19



Collect
application data .
Decision Model
(DMN)
A 4 '
— )
Decide | ! Routing
routing s
Application risk
Routing = Routing = SCOlEHOdel ~ 3
ACCEPT DECLINE Application risk Eligibility k { Eligibility rules J
=
Application risk -
category table "
Offer Decline
product customer Application
Decision Requirements
Level
Eligibility rules
- Eligibility
: & Employment
Business Process Model p P hats Country | Age | NETTGIBLE,
(BPM N) . ELIGIBLE
1 1 UNEMPLOYED - - INELIGIBLE
2 - not(UK) - INELIGIBLE
3 - - <18 INELIGIBLE
4 - - - ELIGIBLE

Decision Logic
Level

Figure 5.1 - Aspects of Modeling

The resulting connected set of models will allow detailed modeling of the role of business rules and analytic models in
business processes, cross-validation of models, top-down process design and automation, and automatic execution of

decision-making (e.g. by a business process management system calling a decision service deployed from a business rules
management system).

Although Figure 5.1 shows a linkage between a business process model and a decision model for the purposes of
explaining the relationship between DMN and other standards, it must be stressed that DMN is not dependent on BPMN,
and its two levels — decision requirements and decision logic — may be used independently or in conjunction to model a
domain of decision-making without any reference to business processes (see clause 5.2).

DMN will provide constructs spanning both decision requirements and decision logic modeling. For decision
requirements modeling, it defines the concept of a Decision Requirements Graph (DRG) comprising a set of elements and

Decision Model and Notation 1.1 20



their connection rules, and a corresponding notation: the Decision Requirements Diagram (DRD). For decision logic
modeling it provides a language called FEEL for defining and assembling decision tables, calculations, if/then/else logic,
simple data structures, and externally defined logic from Java and PMML into executable expressions with formally
defined semantics. It also provides a notation for decision logic (“boxed expressions”) allowing components of the
decision logic level to be drawn graphically and associated with elements of a Decision Requirements Diagram. The
relationship between these constructs is shown in Figure 5.2.

Routing \
Application risk Eligibility K—— ~| Eligibility rules I

Decision Requirements
Diagram

Application risk
category table

Application risk
score model
- ’

Application

......... o Notation
w . - " [ eiigivility rutes
Eligibility s . E o Empayar cairr| s Eligibility
Eligibility rules & status INELIGIBLE,
n ELIGIBLE
Employment | Application.Applicant.Employment. s}
status Status - 1 UNEMPLOYED - - INELIGIBLE
Country Application.Applicant.Country ( 2 R not(UK) _ INELIGIBLE
years and months duration( & L
Age Application.Applicant.Date of birth, i 4 3 - - <18 INELIGIBLE
Application.Date).years P .
. . 4 - = - ELIGIBLE
Boxed Expression - Boxed Expression "-. ; o
(Invocation) : (Decision Table) ~— "=-... g
............... ~
. years and months duration( ;. 3 ; <I8
1 Application.Applicant.Date of Birth, . 9 o ]
Application.Date).years .l R Expression
SRR e Test for Age < 18 >‘ Language
(FEEL)
Computation of Age
from two dates
_/

Figure 5.2: DMN Constructs

Decision Model and Notation 1.1 21



5.2 Scope and uses of DMN

Decision modeling is carried out by business analysts in order to understand and define the decisions used in a business or
organization. Such decisions are typically operational decisions made in day-to-day business processes, rather than the
strategic decision-making for which fewer rules and representations exist.

Three uses of DMN can be discerned in this context:
1. For modeling human decision-making
2. For modeling the requirements for automated decision-making

3. For implementing automated decision-making.

5.2.1 Modeling human decision-making

DMN may be used to model the decisions made by personnel within an organization. Human decision-making can be
broken down into a network of interdependent constituent decisions, and modeled using a DRD. The decisions in the
DRD would probably be described at quite a high level, using natural language rather than decision logic.

Knowledge sources may be defined to model governance of decision-making by people (e.g. a manager), regulatory
bodies (e.g. an ombudsman), documents (e.g. a policy booklet) or bodies of legislation (e.g. a government statute). These
knowledge sources may be linked together, for example to show that a decision is governed (a) by a set of regulations
defined by a regulatory body, and (b) by a company policy document maintained by a manager.

Business knowledge models may be used to represent specific areas of business knowledge drawn upon when making
decisions. This will allow DMN to be used as a tool for formal definition of requirements for knowledge management.
Business knowledge models may be linked together to show the interdependencies between areas of knowledge (in a
manner similar to that used in the existing technique of Knowledge Structure Mapping). Knowledge sources may be
linked to the business knowledge models to indicate how the business knowledge is governed or maintained, for example
to show that a set of business policies (the business knowledge model) is defined in a company policy document (the
knowledge source).

In some cases it may be possible to define specific rules or algorithms for the decision-making. These may be modeled
using decision logic (e.g. business rules or decision tables) to specify business knowledge models in the DRD, either
descriptively (to record how decisions are currently made, or how they were made during a particular period of
observation) or prescriptively (to define how decisions should be made, or will be made in the future).

Decision-making modeled in DMN may be mapped to tasks or activities within a business process modeled using BPMN.
At a high level, a collaborative decision-making task may be mapped to a subset of decisions in a DRD representing the
overall decision-making behavior of a group or department. At a more detailed level, it is possible to model the
interdependencies between decisions made by a number of individuals or groups using BPMN collaborations: each
participant in the decision-making is represented by a separate pool in the collaboration and a separate DRD in the
decision model. Decisions in those DRDs are then mapped to tasks in the pools, and input data in the DRDs are mapped
to the content of messages passing between the pools.

The combined use of BPMN and DMN thus provides a graphical language for describing multiple levels of human
decision-making within an organization, from activities in business processes down to a detailed definition of decision
logic. Within this context DMN models will describe collaborative organizational decisions, their governance, and the
business knowledge required for them.

5.2.2 Modeling requirements for automated decision-making

The use of DMN for modeling the requirements for automated decision-making is similar to its use in modeling human
decision-making, except that it is entirely prescriptive, rather than descriptive, and there is more emphasis on the detailed
decision logic.

For full automation of decisions, the decision logic must be complete, i.e. capable of providing a decision result for any
possible set of values of the input data.

Decision Model and Notation 1.1 22


http://www.akri.co.uk/ksm.html

However, partial automation is more common, where some decision-making remains the preserve of personnel.
Interactions between human and automated decision-making may be modeled using collaborations as above, with
separate pools for human and automated decision-makers, or more simply by allocating the decision-making to separate
tasks in the business process model, with user tasks for human decision-making and business rule tasks for automated
decision-making. So, for example, an automated business rules task might decide to refer some cases to a human
reviewer; the decision logic for the automated task needs to be specified in full but the reviewer’s decision-making could
be left unspecified.

Once decisions in a DRD are mapped to tasks in a BPMN business process flow, it is possible to validate across the two
levels of models. For example, it is possible to verify that all input data in the DRDs are provided by previous tasks in the
business process, and that the business process uses the results of decisions only in subsequent tasks or gateways. DMN
models the relationships between Decisions and Business Processes so that the Decisions that must be made for a
Business Process to complete can be identified and so that the specific decision-making tasks that perform or execute a
Decision can be specified. No formal mapping of DMN ItemDefinition or DMN InputData to BPMN
DataObject is proposed but an implementation could include such a check in a situation where such a mapping could
be determined.

Together, BPMN and DMN therefore allow specification of the requirements for automated decision-making and its
interaction with human decision making within business processes. These requirements may be specified at any level of
detail, or at all levels. The three-tier mapping between business process models, DRDs and decision logic will allow the
definition of these requirements to be supported by model-based computer-aided design tools.

5.2.3 Implementing automated decision-making

If all decisions and business knowledge models are fully specified using decision logic, it becomes possible to execute
decision models.

One possible scenario is the use of “decision services” deployed from a Business Rules Management System (BRMS)
and called by a Business Process Management System (BPMS). A decision service encapsulates the decision logic
supporting a DRD, providing interfaces that correspond to subsets of input data and decisions within the DRD. When
called with a set of input data, the decision service will evaluate the specified decisions and return their results. The
constraint in DMN that all decision logic is free of side-effects means that decision services will comply with SOA
principles, simplifying system design.

The structure of a decision model, as visualized in the DRD, may be used as a basis for planning an implementation
project. Specific project tasks may be included to cover the definition of decision logic (e.g. rule discovery using human
experts, or creation of analytic models), and the implementation of components of the decision model.

Some decision logic representing the business knowledge encapsulated in decision services needs to be maintained over
time by personnel responsible for the decisions, using special “knowledge maintenance interfaces”. DMN supports the
effective design and implementation of knowledge maintenance interfaces: any business knowledge requiring
maintenance should be modeled as business knowledge models in the DRD, and the responsible personnel as knowledge
sources. DRDs then provide a specification of the required knowledge maintenance interfaces and their users, and the
decision logic specifies the initial configuration of the business knowledge to be maintained.

Other decision logic needs to be refreshed by regular analytic modeling. The representation of business knowledge
models as functions in DMN makes the use of analytic models in decision services very simple: any analytic model
capable of representation as a function may be directly called by or imported into a decision service.

5.2.4 Combining applications of modeling

The three contexts described above are not mutually exclusive alternatives; a large process automation project might use
DMN in all three ways.

First, the decision-making within the existing process might be modeled, to identify the full extent of current decision
making and the areas of business knowledge involved. This “as-is” analysis provides the baseline for process
improvement.

Decision Model and Notation 1.1 23



Next, the process might be redesigned to make the most effective use of both automated and human decision-making,
often using collaboration between the two (e.g. using automated referrals to human decision-makers, or decision support
systems which advise or constrain the user). Such a redesign involves modeling the requirements for the decision-making
to occur in each process task and the roles and responsibilities of individuals or groups in the organization. This model
provides a “to-be” specification of the required process and the decision-making it coordinates.

Comparison of the “as-is” and “to-be” models will indicate requirements not just for automation technology, but for
change management: changes in the roles and responsibilities of personnel, and training to support new or modified
business knowledge.

Finally, the “to-be” model will be implemented as executable system software. Provided the decision logic is fully
specified in FEEL and/or other external logic (e.g. externally defined Java methods or PMML models), components of the
decision model may be implemented directly as software components.

DMN does not prescribe any particular methodology for carrying out the above activities; it only supports the models
used for them.

5.3 Basic concepts

5.3.1 Decision requirements level

The word “decision” has two definitions in common use: it may denote the act of choosing among multiple possible
options; or it may denote the option that is chosen. In this specification, we adopt the former usage: a decision is the act
of determining an output value (the chosen option), from a number of input values, using logic defining how the output
is determined from the inputs. This decision logic may include one or more business knowledge models which
encapsulate business know-how in the form of business rules, analytic models, or other formalisms. This basic structure,
from which all decision models are built, is shown in Figure 5.3.

Decision o Business
knowledge
Input data

Figure 5.3: Basic elements of a decision model

For simplicity and generality, many of the figures in this specification show each decision as having a single associated
business knowledge model, but it should be noted that DMN does not require this to be the case. The use of business
knowledge models to encapsulate decision logic is a matter of style and methodology, and decisions may be modeled
with no associated business knowledge models, or with several.

Authorities may be defined for decisions or business knowledge models, which might be (for example) domain experts
responsible for defining or maintaining them, or source documents from which business knowledge models are derived,
or sets of test cases with which the decisions must be consistent. These are called knowledge sources (see Figure 5.4).

Decision Model and Notation 1.1 24



Knowledge Knowledge

source 2

source 1

e Business
Decision -=
knowledge

A

| Input data |

Figure 5.4: Knowledge sources

A decision is said to “require” its inputs in order to determine its output. The inputs may be input data, or the outputs of
other decisions. (In either case they may be data structures, rather than just simple data items.) If the inputs of a decision
Decisionl include the output of another decision Decision2, Decisionl “requires” Decision2. Decisions may therefore be
connected in a network called a Decision Requirements Graph (DRG), which may be drawn as a Decision
Requirements Diagram (DRD). A DRD shows how a set of decisions depend on each other, on input data, and on
business knowledge models. A simple example of a DRD with only two decisions is shown in Figure 5.5.

Decision 1 —-— Busirgea
knowledge 1

i Business
Input data 1 Decision 2 —_‘( knowledge 2 J
‘ Inputdata2 )

Figure 5.5: A simple Decision Requirements Diagram (DRD)

A decision may require multiple business knowledge models, and a business knowledge model may require multiple
other business knowledge models, as shown in Figure 5.6. This will allow (for example) the modeling of complex
decision logic by combining diverse areas of business knowledge, and the provision of alternative versions of decision

logic for use in different situations.
Business
knowledge 1
i - Business
Decision k ledae 2
e L nowledge 2a
Business
knowledge 2
h Business
knowledge 2b

Figure 5.6: Combining business knowledge models

DRGs and their notation as DRDs are specified in detail in clause 6.

Decision Model and Notation 1.1 25



5.3.2 Decision logic level

The components of the decision requirements level of a decision model may be described, as they are above, using only
business concepts. This level of description is often sufficient for business analysis of a domain of decision-making, to
identify the business decisions involved, their interrelationships, the areas of business knowledge and data required by
them, and the sources of the business knowledge. Using decision logic, the same components may be specified in greater
detail, to capture a complete set of business rules and calculations, and (if desired) to allow the decision-making to be
fully automated.

Decision logic may also provide additional information about how to display elements in the decision model. For
example, the decision logic element for a decision table may specify whether to show the rules as rows or as columns.
The decision logic element for a calculation may specify whether to line up terms vertically or horizontally.

The correspondence between concepts at the decision requirements level and the decision logic level is described below.
Please note that in the figures below, as in Figure 5.1 and Figure 5.2 , the grey ellipses and dotted lines are drawn only to
indicate correspondences between concepts in different levels for the purposes of this introduction. They do not form part
of the notation of DMN, which is formally defined in clauses 6.2, Error: Reference source not found, and 10.2. It is
envisaged that implementations will provide facilities for moving between levels of modeling, such as “opening”,
“drilling down” or “zooming in”, but DMN does not specify how this should be done.

At the decision logic level, every decision in a DRG is defined using a value expression which specifies how the
decision’s output is determined from its inputs. At that level, the decision is considered to be the evaluation of the
expression. The value expression may be notated using a boxed expression, as shown in Figure 5.7.

Decision 1 s Business
knowledge 1
Input data 1 Decision 2 . Business opit e )
i °e knowledge 2

A

Decision 2

| Inputdata 2 ) 3 . .
p F ¥ o |'I!ﬁ"" CXPrEsyIon

Figure 5.7: Decision and corresponding value expression

In the same way, at the decision logic level, a business knowledge model is defined using a value expression that specifies
how an output is determined from a set of inputs. In a business knowledge model, the value expression is encapsulated as
a function definition, which may be invoked from a decision's value expression. The interpretation of business
knowledge models as functions in DMN means that the combination of business knowledge models as in Figure 5.6 has
the clear semantics of functional composition. The value expression of a business knowledge model may be notated
using a boxed function definition, as shown in Figure 5.8.

Decision Model and Notation 1.1 26



Decision 1 /" Business oad mimE R g
knowledge 1 g s

... |Business knowledge 1
4 Parameters
/ : 3
Input data 1 Degcision 2 Business J !
knowledge 2 4 Value expression

A

( Inputdata2 )

Figure 5.8: Business knowledge model and corresponding value expression

A business knowledge model may contain any decision logic which is capable of being represented as a function. This
will allow the import of many existing decision logic modeling standards (e.g. for business rules and analytic models) into
DMN. An important format of business knowledge, specifically supported in DMN, is the Decision Table. Such a
business knowledge model may be notated using a Decision Table, as shown in Figure 5.9.

W, Business
Decision 1 —-— kioviladas
g Business knowledge 2

/ \ U Input 1 Input 2 Qutput

s Business :
( Input data 1 ) Decision 2 ——{ knowledge 2 J . : 1 Input entry 2a Output entry 1
RERg Input entry 1a

2 Input entry 2b || Output entry 2

[} ]
I Input data 2 ) 3 | Input entry 1b | Input entry 2c Output entry 3

Figure 5.9: Business knowledge model and corresponding decision table

In most cases, the logic of a decision is encapsulated into business knowledge models, and the value expression
associated with the decision specifies how the business knowledge models are invoked, and how the results of their
invocations are combined to compute the output of the decision. The decision’s value expression may also specify how
the output is determined from its input entirely within itself, without invoking a business knowledge model: in that case,
no business knowledge model is associated with the decision (neither at the decision requirements level nor at the
decision logic level).

An expression language for defining decision logic in DMN, covering all the above concepts, is specified fully in clause
10. This is FEEL: the Friendly Enough Expression Language. The notation for Decision Tables is specified in detail in
clause 8.

5.3.3 Decision services

One important use of DMN will be to define decision-making logic to be automated using “decision services”. A
decision service exposes one or more decisions from a decision model as a service, which might be consumed (for

Decision Model and Notation 1.1 27



example) by a task in a BPMN process model. When the service is called, with the necessary input data and decision
results, it returns the outputs of the exposed decisions. Any decision service encapsulating a DMN decision model will be
stateless and have no side effects. It might be implemented, for example, as a web service. DMN does not specify how
such services should be implemented, but it allows the functionality of a service to be defined against a decision model.

It is assumed that the client requires a certain set of decisions to be made, and that the service is created to meet that
requirement. The sole function of the decision service is to return the results of evaluating that set of decisions (the
“output decisions”). The service may be provided with the results of decisions evaluated externally to the service (the
“input decisions”). The service must encapsulate not just the output decisions but also any decisions in the DRG directly
or indirectly required by the output decisions which are not provided in the input decisions (the “encapsulated decisions”).

The interface to the decision service will consist of:
e Input data: instances of all the input data required by the encapsulated decisions
e Input decisions: instances of the results of all the input decisions

e  Output decisions: the results of evaluating (at least) all the output decisions, using the provided input decisions
and input data.

When the service is called, providing the input data and input decisions, it returns the output decisions.

Note that to define a decision service it is only necessary to specify the output decisions and either the input decisions or
the encapsulated decisions. The remaining attributes (the required input data, and whichever of the encapsulated or input
decisions was not specified) may then be inferred from the decision model against which the service is defined.
Alternatively, if more attributes are defined than are strictly necessary, they may be validated against the decision model.

Figure 5.10 shows a decision service defined against a decision model that includes three decisions. The output decisions
for this service are {Decision 1}, and the input decisions are {}, that is, the service returns the result of Decision 1 and is
not provided with the results of any external decisions. Since Decision 1 requires Decision 2, which is not provided to the
service as input, the service must also encapsulate Decision 2. Decision 3 is not required to be encapsulated. The
encapsulated decisions are therefore {Decision 1, Decision 2}. The service requires Input data 1 and Input data 2, but not

Input data 3.
( Decision Service 1 \
Decision 1 I

| Decision 3
1

Decision 2

K ! /
‘ Input data 2 ' ‘ Input data 3 )

Figure 5.10: A decision service

Multiple decision services may be defined against the same decision model. Figure 5.11 shows a decision service defined
against the same decision model, whose output decisions are {Decision 1} and whose input decisions are {Decision 2}.
The encapsulated decisions for this service are {Decision 1}. The service requires Input data 1, but not Input data 2 or
Input data 3.

Decision Model and Notation 1.1 28



v 4

Decision Service 1
Decision 1 I | Decision 3

Mo e

( Inputdata2 ) ‘ Input data 3 j

Figure 5.11: A decision service taking a decision as input

In its simplest form a decision service would always evaluate all the decisions in the output set set and return all their
results.

For computational efficiency various improvements to this basic interpretation can be imagined, e.g.

e An optional input parameter specifying a list of “requested decisions” (a subset of the minimal output set). Only
the results of the requested decisions would be returned in the output context.

e An optional input parameter specifying a list of “known decisions” (a subset of the encapsulation set), with their
results. The decision service would not evaluate these decisions, but would use the provided input values
directly.

All such implementation details are left to the software provider.

A decision service is “complete” if it contains decision logic for evaluating all the encapsulated decisions on all possible
input data values. A request to the service is “valid” if instances are provided for all the input decisions and input data
required by those decisions which need to be evaluated, i.e. (in the simple case) all the encapsulated decisions, or
(assuming the optional parameters above) any requested decisions and their required sub-decisions which are not already
known.

Decision Model and Notation 1.1 29



Decision Model and Notation 1.1

This page intentionally left blank.

30



6 Requirements (DRG and DRD)

6.1 Introduction

The decision requirements level of a decision model in DMN consists of a Decision Requirements Graph (DRG) depicted
in one or more Decision Requirements Diagrams (DRDs).

A DRG models a domain of decision-making, showing the most important elements involved in it and the dependencies
between them. The elements modeled are decisions, areas of business knowledge, sources of business knowledge, and
input data:

e A Decision element denotes the act of determining an output from a number of inputs, using decision logic
which may reference one or more Business Knowledge Models.

¢ A Business Knowledge Model element denotes a function encapsulating business knowledge, e.g. as business
rules, a decision table, or an analytic model.

e An Input Data element denotes information used as an input by one or more Decisions.
e A Knowledge Source element denotes an authority for a Business Knowledge Model or Decision.

The dependencies between these elements express three kinds of requirements: information, knowledge and authority:
e An Information Requirement denotes Input Data or Decision output being used as input to a Decision.

e A Knowledge Requirement denotes the invocation of a Business Knowledge Model by the decision logic of a
Decision.

e An Authority Requirement denotes the dependence of a DRG element on another DRG element that acts as a
source of guidance or knowledge.

DRDs may also contain any number of artifacts representing annotations of the diagram:

e A Text Annotation is modeler-entered text used for comment or explanation.

e An Association is a dotted connector used to link a Text Annotation to a DRG Element.
These components are summarized in Table 1 and described in more detail in clause 6.2.

A DRG is a graph composed of elements connected by requirements, and is self-contained in the sense that all the
modeled requirements for any Decision in the DRG (its immediate sources of information, knowledge and authority) are
present in the same DRG. It is important to distinguish this complete definition of the DRG from a DRD presenting any
particular view of it, which may be a partial or filtered display: see clause 6.2.4.

6.2 Notation

The notation for all components of a DRD is summarized in Table 1 and described in more detail below.

Decision Model and Notation 1.1 31



Table 1: DRD components

Component Description Notation
Elements Decision A decision denotes the act of determining an
output from a number of inputs, using decision Decision
logic which may reference one or more business
knowledge models.
Business A business knowledge model denotes a function
Knowledge encapsulating business knowledge, e.g. as Business
Model business rules, a decision table, or an analytic knowledge
model.
Input Data An input data element denotes information used
as an input by one or more decisions. When Input data
enclosed within a knowledge model, it denotes the
parameters to the knowledge model.
Knowledge A knowledge source denotes an authority for a Knowledge
Source business knowledge model or decision. SOUrce
Requirements Information An information requirement denotes input data or
Requirement a decision output being used as one of the inputs -
of a decision
Knowledge A knowledge requirement denotes the invocation |  _ _ _ _ _ _ _ _ _ 5
Requirement of a business knowledge model
Authority An authority requirement denotes the dependence
Requirement of a DRD element on another DRD element that |  ~~ ~ ~ ~ 7~~~ 7 .
acts as a source of guidance or knowledge
Artifacts Text A Text Annotation consists of a square bracket
Annotation followed by modeler-entered explanatory text or Text annotation
comment
Association An Association connector links a Text Annotation | ~ «--oevviieii
to the DRG Element it explains or comments on

6.2.1 DRD Elements

6.2.1.1 Decision notation

A Decision is represented in a DRD as a rectangle, normally drawn with solid lines, as shown in Table 1.
Implementations SHALL be able to label each Decision by displaying its Name, and MAY be able to label it by
displaying other properties such as its Question or Description. If displayed, the label SHALL be different from the labels
of all the DRD elements in the same DRD and SHALL be clearly inside the shape of the DRD element.

If the Listed Input Data option is exercised (see 6.2.1.3), all the Decision’s requirements for Input Data SHALL be listed
beneath the Decision’s label and separated from it by a horizontal line, as shown in Figure 6.1. The listed Input Data
names SHALL be clearly inside the shape of the DRD element.

Decision Model and Notation 1.1

32




Decision

Input data 1
Input data 2

Figure 6.1: Decision with Listed Input Data option

The properties of a Decision are listed and described in 6.3.6.

6.2.1.2 Business Knowledge Model notation

A Business Knowledge Model is represented in a DRD as a rectangle with two clipped corners, normally drawn with
solid lines, as shown in Table 1. Implementations SHALL be able to label each Business Knowledge Model by
displaying its Name, and MAY be able to label it by displaying other properties such as its Description. If displayed, the
label SHALL be different from the labels of all the DRD elements in the same DRD and SHALL be clearly inside the
shape of the DRD element.

The properties of a Business Knowledge Model are listed and described in 6.3.8.

6.2.1.3 Input Data notation

An Input Data element is represented in a DRD as a shape with two parallel straight sides and two semi-circular ends,
normally drawn with solid lines, as shown in Table 1. Implementations SHALL be able to label each Input Data element
by displaying its Name, and MAY be able to label it by displaying other properties such as its Description. If displayed,
the label SHALL be different from the labels of all the DRD elements in the same DRD and SHALL be clearly inside the
shape of the DRD element.

An alternative compliant way to display requirements for Input Data, especially useful when DRDs are large or complex,
is that Input Data are not drawn as separate notational elements in the DRD, but are instead listed on those Decision
elements which require them. For convenience in this specification this is called the “Listed Input Data” option.
Implementations MAY offer this option. Figure 6.2 shows two equivalent DRDs, one drawing Input Data elements, the
other exercising the Listed Input Data option. Note that if an Input Data element is not displayed it SHALL be listed on
all Decisions which require it (unless it is deliberately hidden as discussed in 6.2.4).

Decision Model and Notation 1.1 33



Decision 1

Decision 1
Input data 1
Input data 1 Decision 2
1 3 Decision 2
s Input data 1
( nputataz ) Input data 2
Input Data drawn as 3 Input Data listed on

elements ol - Decisions e

Figure 6.2: The Listed Input Data option

The properties of an Input Data element are listed and described in 6.3.10.

6.2.1.4 Knowledge Source notation

A Knowledge Source is represented in a DRD as a shape with three straight sides and one wavy one, normally drawn with
solid lines, as shown in Table 1. Implementations SHALL be able to label each Knowledge Source element by displaying
its Name, and MAY be able to label it by displaying other properties such as its Description. If displayed, the label
SHALL be different from the labels of all the DRD elements in the same DRD and SHALL be clearly inside the shape of
the DRD element.

The properties of a Knowledge Source element are listed and described in 6.3.11.

6.2.2 DRD Requirements

6.2.2.1 Information Requirement notation

Information Requirements may be drawn from Input Data elements to Decisions, and from Decisions to other Decisions.
They represent the dependency of a Decision on information from input data or the results of other Decisions. They may
also be interpreted as data flow: a DRD displaying only Decisions, Input Data and Information Requirements is
equivalent to a dataflow diagram showing the communication of information between those elements at evaluation time.
The Information Requirements of a valid DRG form a directed acyclic graph.

An Information Requirement is represented in a DRD as an arrow drawn with a solid line and a solid arrowhead, as
shown in Table 1. The arrow is drawn in the direction of information flow, i.e. towards the Decision that requires the
information.

6.2.2.2 Knowledge Requirement notation

Knowledge Requirements may be drawn from Business Knowledge Models to Decisions, and from Business Knowledge
Models to other Business Knowledge Models. They represent the invocation of business knowledge when making a
decision. They may also be interpreted as function calls: a DRD displaying only Decisions, Business Knowledge Models
and Knowledge Requirements is equivalent to a function hierarchy showing the function calls involved in evaluating the
Decisions. The Knowledge Requirements of a valid DRG form a directed acyclic graph.

Decision Model and Notation 1.1 34



A Knowledge Requirement is represented in a DRD as an arrow drawn with a dashed line and an open arrowhead, as
shown in Table 1. The arrows are drawn in the direction of the information flow of the result of evaluating the function,
i.e. toward the element that requires the business knowledge.

6.2.2.3 Authority Requirement notation

Authority Requirements may be used in two ways:

a) They may be drawn from Knowledge Sources to Decisions, Business Knowledge Models and other Knowledge
Sources, where they represent the dependence of the DRD element on the knowledge source. This might be used
to record the fact that a set of business rules must be consistent with a published document (e.g. a piece of
legislation or a statement of business policy), or that a specific person or organizational group is responsible for
defining some decision logic, or that a decision is managed by a person or group. An example of this use of
Knowledge Sources is shown in Figure 6.3: in this case the Business Knowledge Model requires two sources of
authority — a policy document and legislation — and the policy document requires the authority of a policy group.

Paolicy
document

Policy group

P Business
Decision - -
knowledge i,

ry ~ ] Legislation

f Input data )

Figure 6.3: Knowledge Sources representing authorities

b) They may be drawn from Input Data and Decisions to Knowledge Sources, where, in conjunction with use (a),
they represent the derivation of Business Knowledge Models from instances of Input Data and Decision results,
using analytics. The Knowledge Source typically represents the analytic model (or modeling process); the
Business Knowledge Model represents the executable logic generated from or dependent on the model. An
example of this use of a Knowledge Source is shown in Figure 6.4: in this case a business knowledge model is
based on an analytic model which is derived from input data and the results of a dependent decision.

el s e e e e e S e Analylic model

s

Decision b Business
knowledge

Input data

Figure 6.4: Knowledge source representing predictive analytics

However, the figures above are only examples. There are many other possible use cases for Authority Requirements (and
since Knowledge Sources and Authority Requirements have no execution semantics their interpretation is necessarily
vague), so this specification leaves the details of their application to the implementer.

Decision Model and Notation 1.1 35



An Authority Requirement is represented in a DRD as an arrow drawn with a dashed line and a filled circular head, as
shown in Table 1. The arrows are drawn from the source of authority to the element governed by it.

6.2.3 Connection rules

The rules governing the permissible ways of connecting elements with requirements in a DRD are described in Clause
6.2.2 above and summarized in Table 2. For clarity, a simple DRD is shown for each permissible connection. In each of
these diagrams, the upper (“to”) element requires the lower (“from”) element.

Note that no requirements may be drawn terminating in Input Data, that is, input data may have no requirements. Note
also that the type of the requirement is uniquely determined by the types of the two elements connected.

Table 2: Requirements connection rules
To
Decision Business Knowledge Input Data
Knowledge Source
Model
Decision not allowed @ not allowed
Information Authority
Requirement Requirement
Business I:' D not allowed not allowed
Knowledge P, -
Knowledge Knowledge
Requirement Requirement
From
Knowledge D g not allowed
Source . = x
Authority Authority Authority
Requirement Requirement Requirement
Input Data not allowed not allowed

Information
Requirement

Authority
Requirement

Decision Model and Notation 1.1

36



6.2.4 Partial views and hidden information

The metamodel (see clause 6.3) provides properties for each of the DRG elements which would not normally be
displayed on the DRD, but provide additional information about their nature or function. For example, for a Decision
these include properties specifying which BPMN processes and tasks make use of the Decision. Implementations
SHALL provide facilities for specifying and displaying such properties.

For any significant domain of decision-making a DRD representing the complete DRG may be a large and complex
diagram. Implementations MAY provide facilities for displaying DRDs which are partial or filtered views of the DRG,
e.g. by hiding categories of elements, or hiding or collapsing areas of the network. DMN does not specify how such
views should be notated, but whenever information is hidden implementations SHOULD provide a clear visual indication
that this is the case.

Two examples of DRDs providing partial views of a DRG are shown in Figure 6.5: DRD 1 shows only the immediate
requirements of a single decision; DRD 2 shows only Information Requirements and the elements they connect. In this
example, for the purposes of illustration only, the approach taken is to use a fine dashed outline for any element with
some hidden requirements.

focus on Decision 1

Decision 1 —— Busitess
knowledge 1

- Business [ - |
Decision 1 ——~r knowledge 4 J l Decision 2

—_—— e —

7N o

0 Business 3
(Inputdala‘l ) Decision 2 ——{ knowledge 2 J : DRDz
( inputdataz ) [|— Decision 1 |

Input data 1 I— Decision 2 |
|l 4 g
Input data 2

Figure 6.5: DRDs as partial views of a DRG

DRDs are not represented in the metamodel and may therefore not be interchanged; a set of definitions comprising a
DRG may be interchanged, and the recipient may generate any desired DRD from them which is supported by the
receiving implementation.

6.2.5 Decision service

A Decision Service is represented in a DRD as rectangle with rounded corners, drawn with a heavy solid border.
Implementations SHALL be able to label each Decision Service by displaying its name, and MAY be able to label it by
displaying other properties such as its Description. If displayed, the label SHALL be different from the labels of all the
DRD elements in the same DRD and SHALL be clearly inside the rectangle. The border SHALL enclose all the

Decision Model and Notation 1.1 37



encapsulated decisions, and no other decisions or input data. The border MAY enclose other DRG elements but these
will not form part of the definition of the Decision Service.

If the set of output decisions is smaller than the set of encapsulated decisions, the Decision Service SHALL be divided
into two parts with a straight solid line. One part SHALL enclose only the output decisions and the label; the other part
SHALL enclose all the encapsulated decisions which are not in the set of output decisions. Either part MAY enclose other
DRG elements but these will not form part of the definition of the Decision Service.

For clarity, the rectangle or its parts MAY be shaded, and all the elements comprising its interface (the output decisions,
input decisions and input data) MAY be drawn with a line that matches the weight and colour of the border. Figure 6.6
shows a Decision Service with two output decisions; other examples (with a single output decision) are shown in Figure
5.10 and Figure 5.11.

Decision 1 I Decision Service 1 | Decision 3
i P4

e

Decision 2

K ‘ j
‘ Input data 1 ' ' Input data 2 ' ‘ Input data 3 '

Figure 6.6: Decision Service notation

6.3 Metamodel

6.3.1 DMN Element metamodel

DMNElement Kt NamedElement
! Ji5d D] 1 “name : String [1]
+dh tion : Siring [0..1]
+extensionAttribute (0.* +|aisefl;‘pstlgi2g [U.r.l‘|11‘lg[ *| +extensionElements |0.* 7%
Extensi ibute ExtensionElements
FaY
' ‘ ' | | | |
|Arﬁfacf ‘ |Enput€fause| |Ezpressfon |
|Defm'rt'[ons| ‘" ision$ r\.'ice| El tCollecti | |DRGE.rement | |m|u| jonit | | nitis |
|DecisioanIe | |0ntputclause | T |UnaryTests |

| | BusinessContextElement | | | | | |
|Lrtemn_..,.. | | Table |
Context |Func‘lionDeﬂn|'tion| |Relation‘ |Penu| Indicat: InputData Knowledge Source

Figure 6.7: DMNElement Class Diagram

|c izationallnit

Decision Model and Notation 1.1 38



DMNE lement is the abstract superclass for the decision model elements. It provides the optional attributes id,
description and label, which are Strings which other elements will inherit. The id of a DMNElement is further
restricted to the syntax of an XML ID (http://www.w3.0org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#1D),

and SHALL be unique within the decision model.

DMNElement has abstract specializations NamedElement and Expression, and concrete specialization
UnaryTests. NamedElement adds the required attribute name, and includes the abstract specializations
BusinessContextElement and DRGElement, as well as concrete specializations Definitions,
ItemDefinition, InformationItem, ElementCollection and DecisionService.

Table 3 presents the attributes and model associations of the DMNE lement element.

Table 3: DMNElement attributes and model associations

Attribute

Description

id: ID [0..1]

Optional identifier for this element. SHALL be unique within
its containing Definitions element.

description: String [0..1]

A description of this element.

label: String [0..1]

An alternative short description of this element. It should
primarily be used on elements that do not have a name
attribute, e.g. an Input Expression. Similar to the description
attribute, it has no notation defined and is neither related to
the DMNLabel element that is used in Diagram Interchange
nor to the outputLabel attribute of a Decision Table.

extensionElements: ExtensionElement [0..1]

This attribute is used as a container to attach additional
elements to any DMN Element. See 6.3.16 for additional
information on extensibility.

extensionAttributes: ExtensionAttribute [0..%]

This attribute is used to attach named extended attributes and
model associations. This association is not applicable when
the XML schema interchange is used, since the XSD
mechanism for supporting "anyAttribute" from other
namespaces already satisfies this requirement. See 6.3.16 for
additional information on extensibility.

Table 4: NamedElement attributes and model associations

Attribute

Description

name: string

The name of this element.

Decision Model and Notation 1.1

39



http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID

6.3.2 Definitions metamodel

NamedElement

|BusfnessCuntgrtErement | +elementCollection |ElementCollection
*
0.* |+businessContextElement 1 g .
0.*
1 Definitions _— o
S : +drgElement (0.
itemDefinition | 0- +namespace : URI[1] g
+itemDefinition +expressionLanguage | URI[0..1] ~drgElement DRGElement
+typelanguage : URI[0..1]
+exporter : String [0..1] 1 0.*
Import _ +exporterversion ; String [0..1]
+importType - URI[1] +import
+ocationUR! : URI[0. 1] 0.*
+namespace ; URI[1] 1
+name : 5tring [1] TextAnnotation
. +text ; Siring [1]
g III* +textFormat : String = “text/plain
L DMANElement " St
+zourceRef 1 +targetRef |1
wenumeration»
+outgoingRefs (0..* +incomingRefs |0.* Az=ociatinnbirection
Association None
+as=ociationDirection : AzscciationDirection One
Both

Figure 6.8: Definitions Class Diagram

The Definitions class is the outermost containing object for all elements of a DMN decision model. It defines the
scope of visibility and the namespace for all contained elements. Elements that are contained in an instance of
Definitions have their own defined life-cycle and are not deleted with the deletion of other elements. The
interchange of DMN files will always be through one or more Definitions.

Definitions is a kind of NamedElement, from which an instance of Definitions inherits the name and
optional id, description and label attributes, which are Strings.

An instance of Definitions has a namespace, which is a String. The name space identifies the default target
namespace for the elements in the Definitions and follows the convention established by XML Schema.

An instance of Definitions may specify an expressionLanguage, which is a URI that identifies the default
expression language used in elements within the scope of this Definitions. This value may be overridden on each
individual LiteralExpression. The language SHALL be specified in a URI format. The default expression
language is FEEL (clause 10), indicated by the URI: “http://www.omg.org/spec/FEEL/20140401”. The simple
expression language S-FEEL (clause 9), being a subset of FEEL, is indicated by the same URI. DMN provides a URI for

Decision Model and Notation 1.1 40



expression languages that are not meant to be interpreted automatically (e.g. pseudo-code that may resemble FEEL but is
not): "http://www.omg.org/spec/DMN/uninterpreted/20140801".

An instance of Definitions may specify a typeLanguage, which is a URI that identifies the default type language
used in elements within the scope of this Definitions. For example, a t ypeLanguage value of
“http://www.w3.0rg/2001/XMLSchema” indicates that the data structures defined within that Definitions are, by
default, in the form of XML Schema types. If unspecified, the default t ypeLanguage is FEEL. This value may be
overridden on each individual TtemDefinition. The typeLanguage SHALL be specified in a URI format (the
URI for FEEL is “http:/www.omg.org/spec/FEEL/20140401”; the URI
"http://www.omg.org/spec/DMN/uninterpreted/20140801" can be used to indicate that a type definition is not meant to be
interpreted)).

An instance of Definitions may specify an exporter and exporterVersion, which are Strings naming the
tool and version used to create the XML serialization. In standards such as BPMN, this has been found to aid in model
interchange between tools.

An instance of Definitions is composed of zero or more drgElements, which are instances of DRGElement, zero
or more elementCollections, which are instances of ElementCollection, zero or more
decisionServices, which are instances of DecisionService, zero or more itemDefinitions, which are
instances of ITtemDefinition and of zero or more businessContextElements, which are instances of
BusinessContextElement.

It may contain any number of associated import, which are instances of Import. Imports are used to import
elements defined outside of this Definitions, e.g. in other Definitions elements, and to make them available for
use by elements in this Definitions.

Definitions inherits all the attributes and model associations from NamedElement. Table 5 presents the additional
attributes and model associations of the Definitions element.

Table 5: Definitions attributes and model associations

Attribute Description

namespace: anyURI [1] This attribute identifies the namespace associated with this
Definitions and follows the convention established by
XML Schema.

expressionLanguage: anyURI [0..1] This attribute identifies the expression language used in

LiteralExpressions within the scope of this
Definitions. The Default is FEEL (clause 10). This value
MAY be overridden on each individual
LiteralExpression. The language SHALL be specified
in a URI format.

typeLanguage: anyURI [0..1] This attribute identifies the type language used in
LiteralExpressions within the scope of this
Definitions. The Default is FEEL (clause 10). This value
MAY be overridden on each individual TtemDefinition.
The language SHALL be specified in a URI format.

exporter: string [0..1] This attribute names the tool used to export the XML
serialization.

Decision Model and Notation 1.1 41




exporterVersion: string [0..1] This attribute names the version of the tool used to export the
XML serialization.

itemDefinition: TtemDefinition [*] This attribute lists the instances of TtemDefinition that
are contained in this Definitions.

drgElement: DRGElement [*] This attribute lists the instances of DRGE1ement that are
contained in this Definitions.

businessContextElement: This attribute lists the instances of

BusinessContextElement [¥] BusinessContextElement that are contained in this
Definitions.

elementCollection: ElementCollection [¥] This attribute lists the instances of ElementCollection

that are contained in this Definitions.

decisionService: DecisionService [*] This attribute lists the instances of DecisionService that
are contained in this Definitions.

import: Import [*] This attribute is used to import externally defined elements
and make them available for use by elements in this
Definitions.

artifact: Artifact [0..*] Artifacts include text annotations and associations among

DMN elements.

6.3.3 Import metamodel

The Import class is used when referencing external elements, either DMN DRGElement or TtemDefinition
instances contained in other Definitions elements, or non-DMN elements, such as an XML Schema or a PMML file.
Imports SHALL be explicitly defined.

An instance of Import has an importType, which is a String that specifies the type of import associated with the
element. For example, a value of “http://www.w3.0rg/2001/XMLSchema” indicates that the imported element is an XML
schema. The DMN namespace indicates that the imported element is a DMN Definitions element.

The location of the imported element may be specified by associating an optional 1ocationURI with an instance of
Import. The locationURI isa URL

An instance of Import has a namespace, which is a URI that identifies the namespace of the imported element, and
also a name, which is a string that serves as a prefix in namespace-qualified names, such as typeRefs specifying imported
ItemDefinitions and expressions referencing imported InformationItems. The namespace value should be
globally unique, but the import name, which is typically a short business-friendly name, need be unique only within the
importing model.

Table 6 presents the attributes and model associations of the Tmport element.

Table 6: Import attributes and model associations

Attribute Description

importType: anyURI Specifies the style of import associated with this Tmport.

Decision Model and Notation 1.1 42



locationURI: anyURI [0..1] Identifies the location of the imported element.

namespace: anyURI Identifies the namespace of the imported element.

Name: String Provides a business-friendly prefix standing for the
namespace in namespace-qualified names. Name must be a
legal FEEL name, as specified in grammar rule 27.

6.3.4 Element Collection metamodel

The ElementCollection class is used to define named groups of DRGElement instances. ElementCollections may
be used for any purpose relevant to an implementation, for example:

e To identify the requirements subgraph of a set one or more decisions (i.e. all the elements in the closure of the
requirements of the set)

e To identify the elements to be depicted on a DRD.

ElementCollection is akind of NamedElement, from which an instance of ElementCollection inherits the
name and optional id, description and 1abel attributes, which are Strings. The 1d of an ElementCollection
element SHALL be unique within the containing instance of Definitions.

An ElementCollection element has any number of associated drgElements, which are the instances of
DRGElement that this ElementCollection defines together as a group. Notice that an ElementCollection
element must reference the instances of DRGElement that it collects, not contain them: instances of DRGElement can
only be contained in Definitions elements.

ElementCollection inherits all the attributes and model associations from NamedElement. Table 7 presents the
additional attributes and model associations of the ElementCollection element.

Table 7: ElementCollection attributes and model associations

Attribute Description

drgElement: DRGElement [*] This attribute lists the instances of DRGElement that this
ElementCollection groups.

6.3.5 DRG Element metamodel

DRGElement is the abstract superclass for all DMN elements that are contained within Definitions and that have a
graphical representation in a DRD. All the elements of a DMN decision model that are not contained directly in a
Definitions element (specifically: all three kinds of requirement, bindings, clause and decision rules, import, and
objective) SHALL be contained in an instance of DRGElement, or in a model element that is contained in an instance of
DRGElement, recursively.

The concrete specializations of DRGElement are Decision, InputData, BusinessKnowledgeModel and
KnowledgeSource.

DRGElement is a specialization of NamedElement, from which it inherits the name and optional id,
description and label attributes. The id of a DRGElement element SHALL be unique within the containing
instance of Definitions.

Decision Model and Notation 1.1 43




A Decision Requirements Diagram (DRD) is the diagrammatic representation of one or more instances of
DRGElement and their information, knowledge and authority requirement relations. The instances of DRGElement are
represented as the vertices in the diagram; the edges represent instances of InformationRequirement,
KnowledgeRequirement or AuthorityRequirement (see clauses 6.3.12, 6.3.13 and 6.3.14). The connection
rules are specified in clause 6.2.3).

DRGElement inherits all the attributes and model associations of NamedElement. It does not define additional
attributes and model associations of the DRGE lement element.

6.3.6 Artifact metamodel

Artifacts are used to provide additional information about a Decision Model. DMN provides two standard
Artifacts: Association and Text Annotation.Associationscanbeusedto link Artifactstoany
DMNElement.

6.3.6.1 Association

An Association is used to link information and Artifacts with DMN graphical elements. Text Annotationsand
other Artifacts can be associated with the graphical elements. An arrowhead on the Association indicates a
direction of flow (e.g., data), when appropriate.

The Association element inherits the attributes and model associations of DMNE 1ement (see Table 3). Table 8
presents the additional attributes and model associations for an Association.

Table 8: Association attributes and model associations:

Attribute Description

associationDirection: AssociationDirection = None associationDirection is an attribute that defines whether or
not the Association shows any directionality with an
None | One | Both .
{ | | } arrowhead. The default is None (no arrowhead). A value of
One means that the arrowhead SHALL be at the Target
Object. A value of Both means that there SHALL be an
arrowhead at both ends of the Association line.

sourceRef: DMNElement[1] The DMNElement that the Association is connecting
from.

targetRef: DMNElement[ 1] The DMNElement that the Association is connecting
to.

6.3.6.2 Text Annotation
Text Annotations are a mechanism for a modeler to provide additional text information for the reader of a DMN Diagram

The TextAnnotation element inherits the attributes and model associations of DMNElement (see Table 3). Table 9
presents the additional attributes for a TextAnnotation.

Table 9: TextAnnotation attributes

Attribute Description

Decision Model and Notation 1.1 44




text: string

Text is an attribute that is text that the modeler wishes to
communicate to the reader of the Diagram.

textFormat: string = "text/plain”

This attribute identifies the format of the text. It SHALL
follow the mime-type format. The default is "text/plain."

6.3.7 Decision metamodel

NamedEfement

DMNElement
it

BPMN20:Process

+usingProcess 0.t
+usingTask iR il | —
|BusmesscontertEfemenr | 0t MR- Fack DRGElement
T _‘ BMM::Objective B
| 0. e
|0rganisationalumt | |Perfc-rman celndicator | +supportedObjective
[—
+decisionOwner |0..* |0.* o.* |
+decisionilaker +impactedPerfgrmanceindicato |Businessi{nowledgel.'lodel |
+reguiredinowlsdge |1
+impactinDecision 0.
fs 0.=lo 4o |Knawledgeﬂequirement|
+decizionilade T ~knowledgeRequirement |0..*
x
. 9. +question ; String [0..1]
+decizion0wned |+allowedAnswers : String [0.1] 0.1
Expression | .decisionLogic ot ; . ——|
+authorityRequirement —— 'rlyﬂequiremen]t
+value |0..* 0.1 0.1 0.1 0.* i
+decisionCutput %
+itype [0..1 0.1
ItemDefinition +requiredDecision |0..1 1 =requiredAuthority 0.1
= Knowledge Source
+itype (0.1 ! 0.* |
InformationRequirement g
sitem |0.% +requiredinput | InputData
Informationitem | *Variable 0..* 0.1
lo.1 )
+variable [0..1 g +nputData 0..1

Figure 6.9: Decision Class Diagram

The class Decision is used to model a decision.

Decision is a concrete specialization of DRGElement and it inherits the name and optional 1d, description and
label attributes from NamedElement

In addition, it may have a question and allowedAnswers, which are all strings. The optional description
attribute is meant to contain a brief description of the decision-making embodied in the Decision. The optional
question attribute is meant to contain a natural language question that characterizes the Decision such that the
output of the Decision is an answer to the question. The optional allowedAnswers attribute is meant to contain a

natural language description of the answers allowed for the question such as Yes/No, a list of allowed values, a range of
numeric values etc.

Decisio

n Model and Notation 1.1

45




In a DRD, an instance of Decision is represented by a decision diagram element.

A Decision element is composed of an optional decisionLogic, which is an instance of Expression, and of
zero or more informationRequirement, knowledgeRequirement and authorityRequirement
elements, which are instances of InformationRequirement, KnowledgeRequirement and
AuthorityRequirement, respectively.

In addition, a Decision defines an InformationItem representing its output. This InformationItem may
include an optional typeRe f, which references an TtemDefinition or other type definition specifying the datatype
of the possible outcomes of the Decision.

The requirement subgraph of a Decision element is the directed graph composed of the Decision element itself,
its informationRequirements, its knowledgeRequirements, and the union of the requirement subgraphs of
each requiredDecision or requiredKnowledge element: that is, the requirement subgraph of a Decision
element is the closure of the informationRequirement, requiredInput, requiredDecision,
knowledgeRequirement and requiredKnowledge associations starting from that Decision element.

An instance of Decision — that is, the model of a decision — is said to be well-formed if and only if all of its
informationRequirement and knowledgeRequirement elements are well-formed, That condition entails, in
particular, that the requirement subgraph of a Decision element SHALL be acyclic, that is, that a Decision element
SHALL not require itself, directly or indirectly.

Besides its logical components: information requirements, decision logic etc, the model of a decision may also document
a business context for the decision (see clause 6.3.8 and Figure 6.10).

The business context for an instance of Decision is defined by its association with any number of
supportedObjectives, which are instances of Objective as defined in OMG BMM, any number of
impactedPerformanceIndicators, which are instances of PerformanceIndicator, any number of
decisionMaker and any number of decisionOwner, which are instances of OrganisationalUnit.

In addition, an instance of Decision may reference any number of usingProcess, which are instances of Process
as defined in OMG BPMN 2.0, and any number of usingTask, which are instances of Task as defined in OMG
BPMN 2.0, and which are the Processes and Tasks that use the Decision element.

Decision inherits all the attributes and model associations from DRGElement. Table 10 presents the additional
attributes and model associations of the Decision class.

Table 10: Decision attributes and model associations

Attribute Description

question: string [0..1] A natural language question that characterizes the Decision
such that the output of the Decision is an answer to the
question.

allowedAnswers: string [0..1] A natural language description of the answers allowed for

the question such as Yes/No, a list of allowed values, a
range of numeric values etc.

variable: Informationltem The instance of InformationItem that stores the result of
this Decision.

decisionLogic: Expression [0..1] The instance of Expression that represents the decision
logic for this Decision.

Decision Model and Notation 1.1 46




informationRequirement: InformationRequirement [ *]

This attribute lists the instances of InformationRequirement
that compose this Decision.

knowledgeRequirement: KnowledgeRequirement [*]

This attribute lists the instances of KnowledgeRequirement
that compose this Decision.

authorityRequirement: AuthorityRequirement [*]

This attribute lists the instances of AuthorityRequirement
that compose this Decision.

supportedObjective: BMM::Objective [*]

This attribute lists the instances of BMM::Objective that
are supported by this Decision.

impactedPerformancelndicator: Performancelndicator

[*]

This attribute lists the instances of Performancelndicator
that are impacted by this Decision.

decisionMaker: OrganisationalUnit [*]

The instances of OrganisationalUnit that make this
Decision.

decisionOwner: OrganisationalUnit [*]

The instances of OrganisationalUnit that own this Decision.

usingProcesses: BPMN::process [*]

This attribute lists the instances of BPMN::process that
require this Decision to be made.

usingTasks: BPMN::task [*]

This attribute lists the instances of BPMN::task that make
this Decision.

6.3.8 Business Context Element metamodel

DMNEfement_‘

NamedElament

|

BusinessContextElement
+URI: URI[0..1]

I

+decizsionMade +decisionMaker

+impactedPerformanceindicator |%-° LimpactingDecision

Performancelndicator Decision OrganisationalUnit

0.* 0.*

+decision0Owned <+decizsionOwner
o % b:*

0:.* i +supportedDecisicn

0.* | +zupportedObjective

Objectiv

e

Figure 6.10: BusinessContextElement class diagram

Decision Model and Notation 1.1

47




The abstract class BusinessContextElement, and its concrete specializations Per formanceIndicator and
OrganizationUnit are placeholders, anticipating a definition to be adopted from other OMG meta-models, such as
OMG OSM when it is further developed.

BusinessContextElement is a specialization of NamedElement, from which it inherits the name and optional
id, description and label attributes.

In addition, instances of BusinessContextElements may have a URI, which is a URI, and

e aninstance of PerformanceIndicator references any number of impactingDecision, which are the
Decision elements that impact it;

e aninstance of OrganisationalUnit references any number of decisionMade and of
decisionOwned, which are the Decision elements that model the decisions that the organization unit
makes or owns.

BusinessContextElement inherits all the attributes and model associations from NamedElement. Table 11
presents the additional attributes and model associations of the BusinessContextElement class.

Table 11: BusinessContextElement attributes and model associations

Attribute Description

URI: anyURI [0..1] The URI of this BusinessContextElement.

PerformanceIndicator inherits all the attributes and model associations from BusinessContextElement.
Table 12 presents the additional attributes and model associations of the PerformanceIndicator class.

Table 12: PerformanceIndicator attributes and model associations

Attribute Description

impactingDecision: Decision [*] This attribute lists the instances of Decision that impact
this PerformanceIndicator.

OrganisationalUnit inherits all the attributes and model associations from BusinessContextElement. Table
13 presents the additional attributes and model associations of the OrganisationalUnit class.

Table 13: OrganisationalUnit attributes and model associations

Attribute Description

decisionMade: Decision [*] This attribute lists the instances of Decision that are made
by this OrganisationalUnit.

Decision Model and Notation 1.1 48



decisionOwned: Decision [*] This attribute lists the instances of Decision that are
owned by this OrganisationalUnit.

6.3.9 Business Knowledge Model metamodel

DINElemeant
NamedElement

fitement 4 |Knowtedge5c-uru:e|
| Expression +requiredAuthority |01
+body |01 0.
|Author|‘t'_.rﬁtequ'trement
0.1
FunctionDefinition | 0.1 BusinessKnowledgeModel
I +encapsulatedLogic
+BKM
1 +requiredknowledge
+formalParameter (0..* +know ledgeRequirement |0..*

Informationltem g o KnowledgeRequirement
0.1

Figure 6.11: BusinessKnowledgeModel class diagram

The business knowledge models that are associated with a decision are reusable modular expressions of all or part of their
decision logic.

The class BusinessKnowledgeModel is used to model a business knowledge model.

BusinessKnowledgeModel is a concrete specialization of DRGElement and it inherits the name and optional id,
description and label attributes from NamedElement.

In a DRD, an instance of BusinessKnowledgeModel is represented by a business knowledge model diagram
element.

Decision Model and Notation 1.1 49




A BusinessKnowledgeModel element may have zero or more knowledgeRequirement, which are instance of
KnowledgeRequirement, and zero or more authorityRequirement, which are instances of
AuthorityRequirement.

The requirement subgraph of a BusinessKnowledgeModel element is the directed graph composed of the
BusinessKnowledgeModel element itself, its knowledgeRequirement elements, and the union of the
requirement subgraphs of all the requiredKnowledge elements that are referenced by its
knowledgeRequirements.

An instance of BusinessKnowledgeModel is said to be well-formed if and only if, either it does not have any
knowledgeRequirement, or all of its knowledgeRequirement elements are well-formed. That condition
entails, in particular, that the requirement subgraph of a BusinessKnowledgeModel element SHALL be acyclic, that
is, that a BusinessKnowledgeModel element SHALL not require itself, directly or indirectly.

At the decision logic level, a BusinessKnowledgeModel element contains a FunctionDefinition, which is an
instance of Expression containing zero or more parameter, which are instances of InformationItem. The
FunctionDefinition thatis contained in a BusinessKnowledgeModel element is the reusable module of
decision logic that is represented by this BusinessKnowledgeModel element. A BusinessKnowledgeModel
element also contains an InformationItem that holds the FunctionDefinition, which allows a Decision to
invoke it by name. The name of that InformationItem SHALL be the same as the name of the
BusinessKnowledgeModel element.BusinessKnowledgeModel inherits all the attributes and model
associations from DRGElement. Table 14 presents the additional attributes and model associations of the
BusinessKnowledgeModel class.

Table 14: BusinessKnowledgeModel attributes and model associations

Attribute Description

encapsulatedLogic: FunctionDefinition [0..1] The function that encapsulates the logic encapsulated by
this BusinessKnowledgeModel.

variable: InformationItem This attribute defines a variable that is bound to the
function defined by the FunctionDefinition,
allowing decision logic to invoke the function by name.

knowledgeRequirement: KnowledgeRequirement This attribute lists the instances of
[*] KnowledgeRequirement that compose this
BusinessKnowledgeModel.

authorityRequirement: AuthorityRequirement This attribute lists the instances of
[*] AuthorityRequirement that compose this
BusinessKnowledgeModel.

Decision Model and Notation 1.1 50




6.3.10 Input Data metamodel

DINEemaent
temDefinition | o NamedElement
+itype’|0..1 o
DRGElamant
iy
+item |0..* _ InputData
Informationltem i —
.1

Figure 6.12: InputData class diagram

DMN 1.1 uses the class InputData to model the inputs of a decision whose values are defined outside of the decision
model.

InputData is a concrete specialization of DRGE lement and it inherits the name and optional id, description
and label attributes from NamedElement.

An instance of InputData defines an InformationItem that stores its value. This InformationItem may
include a t ypeRef that specifies the type of data that is this InputData represents, either an TtemDefinition,
base type in the specified expressionLanguage, or imported type.

In a DRD, an instance of InputData is represented by an input data diagram element. An InputData element does
not have a requirement subgraph, and it is always well-formed.

InputData inherits all the attributes and model associations from DRGElement. Table 15 presents the additional
attributes and model associations of the InputData class.

Decision Model and Notation 1.1 51



Table 15: InputData attributes and model associations

Attribute Description

variable: InformationItem The instance of InformationItem that stores the result
of this InputData.

6.3.11 Knowledge Source metamodel

DRGElement

BusinessKnowledgeModel | | Decision | InputData Knowledge Source
. : +type : String [0..1]
+requiredDecision |0..1 +requiredinput | 0.1 +?\Ener:DrggénisétiunaIUn'rt[E..f
0.1 0.1 +locationURI : URI[0..1]

+reguiredAutherity [0..1
0.1

+requiresAuthority |0.* 0.* . .
AuthorityRequirement +requiresAuthority

0. *

0.t
+reguiresAuthority

[

o 0.*

Figure 6.13: KnowledgeSource class diagram

The class KnowledgeSource is used to model authoritative knowledge sources in a decision model.
In a DRD, an instance of KnowledgeSource is represented by a knowledge source diagram element.

KnowledgeSource is a concrete specialization of DRGE1ement, and thus of NamedElement, from which it inherits
the name and optional 1d, description and label attributes. In addition, a KnowledgeSource has a
locationURI, which is a URL It has a t ype, which is a string, and an owner, which is an instance of
OrganisationalUnit. The type is intended to identify the kind of the authoritative source, e.g. Policy Document,
Regulation, Analytic Insight.

A KnowledgeSource element is also composed of zero or more authorityRequirement elements, which are
instances of AuthorityRequirement.

KnowledgeSource inherits all the attributes and model associations from DRGElement. Table 16 presents the
attributes and model associations of the KnowledgeSource class.

Table 16: KnowledgeSource attributes and model associations

Attribute Description

Decision Model and Notation 1.1 52




locationURI: anyURI [0..1] The URI where this KnowledgeSource is located. The
locationURI SHALL be specified in a URI format.

type: string [0..1] The type of this KnowledgeSource.

owner: OrganisationalUnit [0..1] The owner of this KnowledgeSource.

authorityRequirement: AuthorityRequirement [*] | This attribute lists the instances of
AuthorityRequirement that contribute to this
KnowledgeSource.

6.3.12 Information Requirement metamodel

The class InformationRequirement is used to model an information requirement, as represented by a plain
arrow in a DRD. InformationRequirement is a specialization of DMNE lement, from which it inherits the
optional id, description, and label attributes.

An InformationRequirement element is a component of a Decision element, and it associates that requiring
Decision element with a requiredDecision element, which is an instance of Decision, ora
requiredInput element, which is an instance of InputData.

An InformationRequirement element references an instance of either a Decision or InputData, which
defines a variable. That variable, which is an instance of InformationItem, represents the
InformationRequirement element at the decision logic level.

Notice that an InformationRequirement element must reference the instance of Decision or InputData that
it associates with the requiring Decision element, not contain it: instances of Decision or InputData can only be
contained in Definitions elements.

An instance of InformationRequirement is said to be well-formed if and only if all of the following are true:
e itreferences a requiredDecision ora requiredInput element, but not both,
e thereferenced requiredDecision or requiredInput element is well-formed,

e the Decision element that contains the instance of InformationRequirement is not in the requirement
subgraph of the referenced requiredDecision element, ifthis InformationRequirement element
references one.

Table 17 presents the attributes and model associations of the InformationRequirement element.

Table 17: InformationRequirement attributes and model associations

Attribute Description

requiredDecision: Decision [0..1] The instance of Decision that this
InformationRequirement associates with its
containing Decision element.

requiredInput: InputData [0..1] The instance of TnputData that this
InformationRequirement associates with its
containing Decision element.

Decision Model and Notation 1.1 53




6.3.13 Knowledge Requirement metamodel

The class KnowledgeRequirement is used to model a knowledge requirement, as represented by a dashed arrow in
a DRD. KnowledgeRequirement is a specialization of DMNE lement, from which it inherits the optional id,
description, and label attributes.

A KnowledgeRequirement element is a component of a Decision element or of a
BusinessKnowledgeModel element, and it associates that requiring Decision or BusinessKnowledgeModel
element with a requiredKnowledge element, which is an instance of BusinessKnowledgeModel.

Notice that a KnowledgeRequirement element must reference the instance of BusinessKnowledgeModel that
it associates with the requiring Decision or BusinessKnowledgeModel element, not contain it: instances of
BusinessKnowledgeModel can only be contained in Definitions elements.

An instance of KnowledgeRequirement is said to be well-formed if and only if all of the following are true:
e itreferences a requiredKnowledge element,
o the referenced requiredKnowledge element is well-formed,

e ifthe KnowledgeRequirement element is contained in an instance of BusinessKnowledgeModel,
that BusinessKnowledgeModel element is not in the requirement subgraph of the referenced
requiredKnowledge element.

Table 18 presents the attributes and model associations of the KnowledgeRequirement element.

Table 18: KnowledgeRequirement attributes and model associations

Attribute Description

requiredKnowledge: BusinessKnowledgeModel |The instance of BusinessKnowledgeModel that this
KnowledgeRequirement associates with its containing
Decision or BusinessKnowledgeModel element.

6.3.14 Authority Requirement metamodel

The class AuthorityRequirement is used to model an authority requirement, as represented by an arrow drawn
with a dashed line and a filled circular head in a DRD. AuthorityRequirement is a specialization of
DMNElement, from which it inherits the optional 1d, description, and label attributes.

An AuthorityRequirement element is a component of a Decision, BusinessKnowledgeModel or
KnowledgeSource element, and it associates that requiring Decision, BusinessKnowledgeModel or
KnowledgeSource element with a requiredAuthority element, which is an instance of KnowledgeSource, a
requiredDecision element, which is an instance of Decision, ora requiredInput element, which is an
instance of TnputData.

Notice that an AuthorityRequirement element must reference the instance of KnowledgeSource, Decision
or InputData that it associates with the requiring element, not contain it: instances of KnowledgeSource,
Decision or InputData can only be contained in Definitions elements.

Table 19 presents the attributes and model associations of the AuthorityRequirement element.

Decision Model and Notation 1.1 54



Table 19: AuthorityRequirement attributes and model associations

Attribute Description

requiredAuthority: KnowledgeSource [0..1] The instance of KnowledgeSource that this
AuthorityRequirement associates with its containing
KnowledgeSource, Decision or
BusinessKnowledgeModel element.

requiredDecision: Decision [0..1] The instance of Decision that this
AuthorityRequirement associates with its containing
KnowledgeSource element.

requiredInput: InputData [0..1] The instance of InputData that this
AuthorityRequirement associates with its containing
KnowledgeSource element.

6.3.15 Decision service metamodel

The DecisionService class is used to define named decision services against the decision model contained in an
instance of Definitions.

DecisionService is a kind of NamedElement, from which an instance of DecisionService inherits the name
and optional 1d, description and label attributes, which are Strings. The id ofa DecisionService element
SHALL be unique within the containing instance of Definitions.

A DecisionService element has one or more associated outputDecisions, which are the instances of
Decision required to be output by this DecisionService, i.e. the Decisions whose results the Decision Service
must return when called.

A DecisionService element has zero or more encapsulatedDecisions, which are the instances of
Decision required to be encapsulated by this DecisionService, i.e. the Decisions to be evaluated by the Decision
Service when it is called.

A DecisionService element has zero or more inputDecisions, which are the instances of Decision required
as input by this DecisionService, i.e. the Decisions whose results will be provided to the Decision Service when it is
called.

A DecisionService element has zero or more inputData, which are the instances of InputData required as
input by this DecisionService, i.e. the Input Data which will be provided to the Decision Service when it is called.

The encapsulatedDecisions, inputDecisions and inputData attributes are optional. At least one of the
encapsulatedDecisions and inputDecisions attributes SHALL be specified.

DecisionService inherits all the attributes and model associations from NamedElement. Table 20 presents the
additional attributes and model associations of the DecisionService element.

Decision Model and Notation 1.1 55



Table 20: DecisionService attributes and model associations

Attribute Description

outputDecisions: Decision [1..*] This attribute lists the instances of Decision required to be
output by this DecisionService.

encapsulatedDecisions: Decision [0..%] If present, this attribute lists the instances of Decision to
be encapsulated in this DecisionService

inputDecisions: Decision [0..*] If present, this attribute lists the instances of Decision
required as input by this DecisionService.

inputData: InputData [0..*] If present, this attribute lists the instances of InputData
required as input by this service

6.3.16 Extensibility

DMVNElement
1 1
+extensionElements |0..* 0.* |+extensionAttribute
ExtensionElements ExtensionAttribute

+name . String [1]

1 1 0.*
+extensionElement (0..* +value (0.1  +valueRef [0..1
sMetaclasss
Element

Figure 6.14: Extensibility class diagram

The DMN metamodel is aimed to be extensible. This allows DMN adopters to extend the specified metamodel in a way
that allows them to be still DMN-compliant. It provides a set of extension elements, which allows DMN adopters to attach
additional attributes and elements to standard and existing DMN elements. This approach results in more interchangeable
models, because the standard elements are still intact and can still be understood by other DMN adopters. It's only the
additional attributes and elements that MAY be lost during interchange.

A DMN extension can be done using two different elements:
1. ExtensionElements

2. ExtensionAttribute

Decision Model and Notation 1.1 56



ExtensionElements is a container for attaching arbitrary elements from other metamodels to any DMN element.
ExtensionAttribute allows these attachments to also have name. This allows DMN adopters to integrate any
metamodel into the DMN metamodel and reuse already existing model elements.

6.3.16.1 ExtensionElements

The ExtensionElements element is a container to aggregate elements from other metamodels inside any
DMNE lement. Table 21 presents the attributes and model associations for the ExtensionElements element.

Table 21: ExtensionElements attributes and model associations

Attribute Description

extensionElement: Element [0..*] The contained Element. This association is not applicable
when the XML schema interchange is used, since the XSD
mechanism for supporting "any" elements from other
namespaces already satisfies this requirement.

6.3.16.2 ExtensionAttribute

The ExtensionAttribute element contains an Element or a reference to an Element from another metamodel. An
ExtensionAttribute also has a name to define the role or purpose of the associated element. This type is not
applicable when the XML schema interchange is used, since the XSD mechanism for supporting "anyAttribute" from
other namespaces already satisfies this requirement. Table 22 presents the model associations for the
ExtensionAttribute element.

Table 22: ExtensionAttribute attributes and model associations

Attribute Description
name: string The name of the extension attribute.
value: Element [0..1] The contained Element. This attribute SHALL NOT be

used together with valueRef.

valueRef: Element [0..1] A reference to the associated Element. This attribute
SHALL NOT be used together with value.

6.4 Examples

Examples of DRDs are provided in clause 11.3. The decision requirements level.

Decision Model and Notation 1.1 57




Decision Model and Notation 1.1

This page intentionally left blank.

58



7 Relating Decision Logic to Decision Requirements

7.1 Introduction

Clause 6 described how the decision requirements level of a decision model — a DRG represented in one or more DRDs —
may be used to model the structure of an area of decision making. However, the details of how each decision's outcome
is derived from its inputs must be modeled at the decision logic level. This section introduces the principles by which
decision logic may be associated with elements in the DRG. Specific representations of decision logic (decision tables
and FEEL expressions) are then defined in clauses 8, 9 and 10.

The decision logic level of a decision model in DMN consists of one or more value expressions. The elements of decision
logic modeled as value expressions include tabular expressions such as decision tables and invocations, and literal (text)
expressions such as age > 30.

e A literal expression represents decision logic as text that describes how an output value is derived from its input
values. The expression language may, but need not, be formal or executable: examples of literal expressions
include a plain English description of the logic of a decision, a first order logic proposition, a Java computer
program and a PMML document. Clause 10 specifies an executable expression language called FEEL. Clause
9 specifies a subset of FEEL (S-FEEL) that is the default language for literal expressions in DMN decision tables
(clause 8).

e A decision table is a tabular representation of decision logic, based on a discretization of the possible values of
the inputs of a decision, and organized into rules that map discretized input values onto discrete output values
(see clause 8).

e An invocation is a tabular representation of how decision logic that is represented by a business knowledge
model is invoked by a decision, or by another business knowledge model. An invocation may also be
represented as a literal expression, but usually the tabular representation will be more understandable.

Tabular representations of decision logic are called boxed expressions in the remainder of this specification.

All three DMN conformance levels include all the above expressions. At DMN Conformance Level 1, literal expressions
are not interpreted and, therefore, free. At DMN Conformance Level 2, literal expressions are restricted to S-FEEL.
Clause 10 specifies additional boxed expressions available at DMN Conformance Level 3.

Decision logic is added to a decision model by including a value expression component in some of the decision model
elements in the DRG:

e From a decision logic viewpoint, a decision is a piece of logic that defines how a given question is answered,
based on the input data. As a consequence, each decision element in a decision model may include a value
expression that describes how a decision outcome is derived from its required input, possibly invoking a business
knowledge model;

e From a decision logic viewpoint, a business knowledge model is a piece of decision logic that is defined as a
function allowing it to be re-used in multiple decisions. As a consequence, each business knowledge model
element may include a value expression, which is the body of that function.

Another key component of the decision logic level is the variable: Variables are used to store values of Decisions and
InputData for use in value expressions. InformationRequirements specify variables in scope via reference to those
Decisions and InputData, so that value expressions may reference these variables. Variables link information
requirements in the DRG to the value expressions at the decision logic level:

e From a decision logic viewpoint, an information requirement is a requirement for an externally provided value to
be assigned to a free variable in the decision logic, so that a decision can be evaluated. As a consequence, each
information requirement in a decision model points to a Decision or InputData, which in turn defines a
variable that represents the associated data input in the decision’s expression.

Decision Model and Notation 1.1 59



e  The variables that are used in the body of the function defined by a business knowledge model element in the
DRG must be bound to the information sources in each of the requiring decisions. As a consequence, each
business knowledge model includes zero or more variables that are the parameters of the function.

The third key element of the decision logic level are the item definitions that describe the types and structures of data
items in a decision model: input data elements in the DRG, and variables and value expressions at the decision logic
level, may reference an associated item definition that describes the type and structure of the data expected as input,
assigned to the variable or resulting from the evaluation of the expression.

Notice that knowledge sources are not represented at the decision logic level: knowledge sources are part of the
documentation of the decision logic, not of the decision logic itself.

The dependencies between decisions, required information sources and business knowledge models, as represented by the
information and knowledge requirements in a DRG, constrain how the value expressions associated with these elements
relate to each other.

As explained above, every information requirement at the DRG level is associated with a variable used at the decision
logic level. Each variable that is referenced by a decision’s expression must be a variable referenced by one of the
decision’s information requirements or an information requirement in the decision's requirement subgraph. Also, each
variable in a decision’s information requirement must be a variable referenced in the decision’s expression.

e Ifadecision requires another decision, the value expression of the required decision assigns the value to the
variable for use in evaluating the requiring decision. This is the generic mechanism in DMN for composing
decisions at the decision logic level.

e Ifadecision requires an input data, the value of the variable is assigned the value of the data source attached to
the input data at execution time. This is the generic mechanism in DMN for instantiating the data requirements
for a decision. Notice that, for required input data, FEEL allows test data to be specified for input data.

The input variables of a decision's decision logic must not be used outside that value expression or its component value
expressions: the decision element defines the lexical scope of the input variables for its decision logic. To avoid name
collisions and ambiguity, the name of a variable must be unique within its scope. When DRG elements are mapped to
FEEL, the name of a variable is the same as the (possibly qualified) name of its associated input data or decision, which
guarantees its uniqueness.

When DRG elements are mapped to FEEL, all the decisions and input data in a DRG define a context, which is the literal
expression that represents the logic associated with the decision element and that represents that scope (see 9.3.2.8). The
information requirement elements in a decision are context entries in the associated context, where the key is the name of
the variable that the information requirement defines, and where the expression is the context that is associated with the
required decision or input data element that the information requirement references. The value expression that is
associated with the decision as its decision logic is the expression in the context entry that specifies what is the result of
the context.

In the same way, a business knowledge model element defines the lexical scope of its parameters, that is, of the input
variables for its body.

In FEEL, the literal expression and scoping construct that represents the logic associated with a business knowledge
model element is a function definition (see 10.3.2.11), where the formal parameters are the names of the parameters in the
business knowledge model element, and the expression is the value expression that is the body of the business knowledge
model element.

If a business knowledge model element requires one or more other business knowledge models, it must have an explicit
value expression that describes how the required business knowledge models are invoked and their results combined or
otherwise elaborated.

At the decision logic level, a decision invokes a required business knowledge model by evaluating the business
knowledge model's value expression with the parameters bound to its own input value. How this may be achieved
depends on how the decision logic is partitioned between the decision and business knowledge models:

Decision Model and Notation 1.1 60



e [fadecision element requires more than one business knowledge element, its value expression must be a literal
expression that specifies how the business knowledge model elements are invoked and how their results are
combined into the decision's outcome.

e Ifadecision does not require any business knowledge models, its value expression must be a literal expression
or decision table that specifies the entire decision logic for deriving the output from the inputs.

e Similarly, if a decision element requires only one business knowledge model element, but the logic of the
decision elaborates on the logic of its required business knowledge model, the decision element must have a
literal expression that specifies how the business knowledge model's value expression is invoked, and how its
result is elaborated to provide the decision's outcome.

e In all other cases (i.e. when a decision requires exactly one business knowledge model and does not elaborate the
logic), the value expression of a decision element may be a value expression of type invocation. In a value
expression of type invocation, only the bindings of the business knowledge model parameters to the decisions
input data need be specified: the outcome of the decision is the result returned by the business knowledge
model's value expression for the values passed to its parameters.

The binding of a business knowledge model's parameter is a value expression that specifies how the value passed to that
parameter is derived from the values of the input variables of the invoking decision.

7.2 Notation

7.2.1 Expressions

We define a graphical notation for decision logic called boxed expressions. This notation serves to decompose the
decision logic model into small pieces that can be associated with DRG artifacts. The DRD plus the boxed expressions
form a complete, mostly graphical language that completely specifies Decision Models.

In addition to the generic notion of boxed expression, this section specifies two kinds of boxed expressions:

® boxed literal expression,

® boxed invocation.

The boxed expression for a decision table is defined in clause 8. Further types of boxed expressions are defined for FEEL,
in clause 10.

Boxed expressions are defined recursively, i.e. boxed expressions can contain other boxed expressions. The top-level
boxed expression corresponds to the decision logic of a single DRG artifact. This boxed expression SHALL have a name
box that contains the name of the DRG artifact. The name box may be attached in a single box on top, as shown in Figure
7.1:

Name

top-level boxed expression

Figure 7.1: Boxed expression

Alternatively, the name box and expression box can be separated by white space and connected on the left side with a
line, as shown in Figure 7.2:

Decision Model and Notation 1.1 61



Name

top-level boxed expression

Figure 7.2: Boxed expression with separated name and expression boxes

Name is the only visual link defined between DRD elements and boxed expressions. Graphical tools are expected to
support appropriate graphical links, for example, clicking on a decision shape opens a decision table. How the boxed
expression is visually associated with the DRD element is left to the implementation.

7.2.2 Boxed literal expression
In a boxed expression, a literal expression is represented by its text. However, two notational conventions are provided to

improve the readability of boxed literal expressions: typographical string literals and typographical date and time literals.

7.2.21 Typographical string literals

A string literal such as "DECLINED" can be represented alternatively as the italicized literal DECLINED. For example,
Figure 7.3 is equivalent to Figure 7.4:

Credit contingency factor table

Credit
u Risk Category Contingency
Factor
HIGH, DECLINE 0.6
MEDIUM 0.7
3 LOW, VERY LOW 0.8
Figure 7.3: Decision table with italicized literals
Credit contingency factor table
Credit
U Risk Category Contingency
Factor
“HIGH”, “DECLINE” 0.6
“MEDIUM” 0.7
3 “LOW”, “VERY LOW” 0.8

Figure 7.4: Decision table with string literals

To avoid having to discern whether (e.g.) HIGH, DECLINE is "HIGH", "DECLINE" or "HIGH, DECLINE",
typographical string literals SHALL be free of commas ("," characters). FEEL typographical string literals SHALL
conform to grammar rule 27 (name).

Decision Model and Notation 1.1 62



7.2.2.2 Typographical date and time literals

A date, time, date and time, or duration expression such as date("2013-08-09") can be represented alternatively as the
bold italicized literal 2013-08-09. The literal SHALL obey the syntax specified in clauses 10.3.2.3.4, 10.3.2.3.5 and
10.3.2.3.7.

7.2.3 Boxed invocation

An invocation is a container for the parameter bindings that provide the context for the evaluation of the body of a
business knowledge model.

The representation of an invocation is the name of the business knowledge model with the parameters’ bindings explicitly
listed.

As a boxed expression, an invocation is represented by a box containing the name of the business knowledge model to be
invoked, and boxes for a list of bindings, where each binding is represented by two boxed expressions on a row: the box
on the left contains the name of a parameter, and the box on the right contains the binding expression, that is the
expression whose value is assigned to the parameter for the purpose of evaluating the invoked business knowledge model
(see Figure 7.5).

Name

invoked business knowledge model
parameter 1 Binding expression 1
parameter 2 Binding expression 2
parameter n Binding expression n

Figure 7.5: Boxed invocation

The invoked business knowledge model is represented by the name of the business knowledge model. Any other visual
linkage is left to the implementation.

7.3 Metamodel

An important characteristic of decisions and business knowledge models is that they may contain an expression that
describes the logic by which a modeled decision shall be made, or pieces of that logic.

The class Expression is the abstract superclass for all expressions that are used to describe complete or parts of
decision logic in DMN models and that return a single value when interpreted (clause 7.3.1). Here “single value” possibly
includes structured data, such as a decision table with multiple output clauses.

DMN defines three concrete kinds of Expression: LiteralExpression, DecisionTable (see clause 8) and
Invocation.

An expression may reference variables, such that the value of the expression, when interpreted, depends on the values
assigned to the referenced variables. The class InformationItem is used to model variables in expressions.

The value of an expression, like the value assigned to a variable, may have a structure and a range of allowable values.
The class TtemDefinition is used to model data structures and ranges.

Decision Model and Notation 1.1 63



DMNElement |,3 NamedElement

hemDefinition

+typelanguage : URI[0..1] Htype
) +typeHef : String [0..1] 0..1
+t¥Pe | +is Collection : Boolean [1] = false
0.1 +itermComponent

+allow edValues | 0..1

UnaryTests
A
+expressionLanguage : URI[0..1]
+text - String
&+ = e *
ch G value (0. +item | 0..
01 Expression Informationltem
% : : +/valueExpression : :
s ealedEinetin +typeRef: String [0..1] B +typeRef : String [0..1]
0.1 0.1
1 Fay
+parameter|
Invocation LiteralExpression Llrn port |
+expressionLanguage : URI[0.. 1]
+text ; String [0..1]

1

+binding | 0. *
g o +importedyvalues | 0..1
Sy Importedalues
0.1 +expressionLanguage : URI[0..1]
o..* +importedE lement : String [0..1]

Figure 7.6: Expression class diagram

7.3.1 Expression metamodel

An important characteristic of decisions and business knowledge models, is that they may contain an expression that
describes the logic by which a modeled decision shall be made, or pieces of that logic.

Expression is an abstract specialization of DMNE lement, from which it inherits the optional 1d, description
and label attributes.

An instance of Expression is a component of a Decision element, of a BusinessKnowledgeModel element, or
ofan TtemDefinition element, or it is a component of another instance of Expression, directly or indirectly.

An Expression references zero or more variables implicitly by using their names in its expression text. These
variables, which are instances of InformationItem, are lexically scoped, depending on the Expression type. If
the Expression is the logic of a Decision, the scope is includes that Decision's requirements. If the
Expression is the body of the encapsulatedLogic of a BusinessKnowledgeModel, the scope includes the

Decision Model and Notation 1.1 64



FunctionDefinition's parameters and the BusinessKnowledgeModel's requirements. If the Expression is
the value of a ContextEntry, the scope includes the previous entries in the Context.An instance of Expression
references an optional t ypeRe £, which points to either a base type in the default typeLanguage, a custom type specified
by an TtemDefinition, or an imported type. The referenced type specifies the Expression's range of possible
values. If an instance of Expression that defines the output of a Decision element includes a typeRef, the
referenced type SHALL be the same as the type of the containing Decision element.

An instance of Expression can be interpreted to derive a single value from the values assigned to its variables. How
the value of an Expression element is derived from the values assigned to its variablesdepends on the concrete kind of
the Expression. The TtemDefinition element specializes NamedElement and it inherits its attributes and
model associations. Table 23 presents the additional attributes and model associations of the ITtemDefinition
element.

Expression inherits from the attributes and model associations of DMNElement.

7.3.2 ItemDefinition metamodel

The inputs and output of decisions are data items whose value, at the decision logic level, is assigned to variables or
represented by value expressions.

An important characteristic of data items in decision models is their structure. DMN does not require a particular format
for this data structure, but it does designate a subset of FEEL as its default.

The class TtemDefinition is used to model the structure and the range of values of the input and the outcome of
decisions.

As a concrete specialization of NamedElement, an instance of ITtemDefinition has a name and an optional id
and description. The name ofan TtemDefinition element SHALL be unique within the containing instance of
Definitions and its associated namespace.

The default type language for all elements can be specified in the Definitions element using the t ypeLanguage
attribute. For example, a t ypeLanguage value of http://www.w3.0rg/2001/XMLSchema” indicates that the data
structures used by elements within that Definitions are in the form of XML Schema types. If unspecified, the default
is FEEL.

Notice that the data types that are built-in in the t ypeLanguage that is associated with an instance of Definitions
need not be redefined by ITtemDefinition elements contained in that Definitions element: they are considered
imported and can be referenced in DMN elements within the Definitions element.

The type language can be overridden locally using the t ypeLanguage attribute in the TtemDefinition element.

Notice, also, that the data types and structures that are defined at the top level in a data model that is imported using an
Import element that is associated with an instance of Definitions need not be redefined by TtemDefinition
elements contained in that Definitions element: they are considered imported and can be referenced in DMN
elements within the Definitions element.

An ItemDefinition element MAY have a typeRef, which is a string that references, as a qualified name, either an
ItemDefinition in the current instance of Definitions or a built-in type in the specified t ypeLanguage or a
type defined in an imported DMN, XSD, or other document. In the latter case, the external document SHALL be
imported in the Definitions element that contains the instance of ITtemDefinition, using an Import element
specifying both the namespace value and its name when used a qualifier. For example, in the case of data structures
contributed by an XML schema, an Import would be used to specify the file location of that schema, and the t ypeRef
attribute would reference the type or element definition in the imported schema. If the type language is FEEL the built-in
types are the FEEL built-in data types: number, string, boolean, days and time duration, years and months duration, time,
and date and time. A typeRef referencing a built-in type SHALL omit the prefix.

An ItemDefinition element may restrict the values that are allowed from typeRef, using the allowedvValues

Decision Model and Notation 1.1 65



attribute. The allowedValues are an instance of unaryTests that specifies the allowed values or ranges of allowed
values within the domain of the t ypeRef. The type of the allowed values SHALL be consistent with the containing
ItemDefinition element. If an TtemDefinition element contains one or more allowedValues, the
allowedValues specifies the complete range of values that this TtemDefinition represents. If an
TtemDefinition element does not contain allowedValues, its range of allowed values is the full range of the
referenced typeRef. In cases where the values that an TtemDefinition element represents are collections of values
in the allowed range, the multiplicity can be projected into the attribute i sCollection. The default value for this
attribute is false.

An alternative way to define an instance of ITtemDefinition is as a composition of TtemDefinition elements.
An instance of TtemDefinition may contain zero or more i temComponent, which are themselves
ItemDefinitions. Each itemComponent in turn may be defined by either a t ypeRef and allowedValues or
anested i temComponent. In this way, complex types may be defined within DMN. The name of an
itemComponent (nested ItemDefinition) must be unique within its containing TtemDefinition. An
ItemDefinition element SHALL be defined using only one of the alternative ways:

e reference to a built-in or imported t ypeRef, possibly restricted with allowedValues;

e composition of ITtemDefinition elements.

The TtemDefinition element specializes NamedElement and it inherits its attributes and model associations.
Table 23 presents the additional attributes and model associations of the ITtemDefinition element.

Table 23: ItemDefinition attributes and model associations

Attribute Description

typeRef: String [1] This attribute identifies by namespace-prefixed name the base type of
this ITtemDefinition.

typeLanguage: String [0..1] This attribute identifies the type language used to specify the base
type of this TtemDefinition. This value overrides the type
language specified in the Definitions element. The language
SHALL be specified in a URI format.

allowedValues: UnaryTests [0..1] This attribute lists the possible values or ranges of values in the base
type that are allowed in this TtemDefinition.

itemComponent: ltemDefinition[*] This attribute defines zero or more nested ITtemDefinitions that
compose this TtemDefinition.

IsCollection: Boolean Setting this flag to frue indicates that the actual values defined by this
ItemDefinition are collections of allowed values. The default is
false.

Decision Model and Notation 1.1 66




7.3.3 Informationltem metamodel

The class InformationItemn is used to model variables at the decision logic level in decision models.

InformationItem is a concrete subclass of NamedElement, from which it inherits the id, and optional name,
description, and label attributes, except that an InformationItem element SHALL have a name attribute,
which is the name that is used to represent it in other Expression elements. The name of an InformationItem
element SHALL be unique within its scope.

Variables represent values that result from a decision, are assigned to input data by an external data source, or are passed
to a module of decision logic that is defined as a function (and that is represented by a business knowledge model
element). In the first or second case, a variable may be referenced by other dependent decisions by means of their
information requirements. In the third case, a variable is one of the parameters of the function that is the realization, at the
decision logic level, of a business knowledge model element.

A variable representing an instance of Decision or InputData referenced by an InformationRequirement
SHALL be referenced by the value expression of the decision logic in the Decision element that contains the
InformationRequirement element. A parameter in an instance of BusinessKnowledgeModel SHALL be a
variable in the value expression of that BusinessKnowledgeModel element.

An InformationItem element contained in a Decision is assigned the value of the Decision's value
expression.

e An InformationItem element thatis a parameter in a FunctionDefinition is assigned a value by a
Binding element as part of an instance of Invocation.

e An InformationItem element contained in an InputData is assigned a value by an external data source
that is attached at runtime.

e An InformationItem element contained ina ContextEntry is assigned a value by the
ContextEntry's value expression.

In any case, the datatype indicated by the t ypeRe £ that is associated with an instance of InformationItem SHALL
be compatible with the datatype that is associated with the DMN model element from which it takes its value.
InformationItem inherits all of the attributes and model associations of NamedElement. Table 24 presents the
additional attributes and model associations of the InformationItem element.

Table 24: InformationItem attributes and model associations

Attribute Description

IvalueExpression: Expression [0..1] The Expression whose value is assigned to this
InformationItem. This is a derived attribute.

typeRef: String [1] Qualified name of the type of this InformationItem.

7.3.4 Literal expression metamodel

The class LiteralExpression is used to model a value expression whose value is specified by text in some specified
expression language.

LiteralExpression is a concrete subclass of Expression, from which it inherits the 1d and typeRef attributes.

Decision Model and Notation 1.1 67



An instance of LiteralExpression has an optional text, which is a String, and an optional
expressionLanguage, which is a String that identifies the expression language of the text. If no
expressionLanguage is specified, the expression language of the text is the expressionLanguage that is
associated with the containing instance of Definitions. The expressionLanguage SHALL be specified in a URI
format. The default expression language is FEEL.

As a subclass of Expression, each instance of LiteralExpression has a value. The text in an instance of
LiteralExpression determines its value, according to the semantics of the LiteralExpression’s
expressionLanguage. The semantics of DMN 1.1 decision models as described in this specification applies only if
the text of all the instances of LiteralExpression in the model are valid expressions in their associated
expression language.

An instance of LiteralExpression may include importedvalues, which is an instance of a subclass Import
that identifies where the text of the LiteralExpression is located. importedValues is an expression that selects
text from an imported document. An instance of LiteralExpression SHALL NOT have both a text and
importedvalues. The importType of the importedvalues identifies the type of document containing the
imported text and SHALL be consistent with the expressionLanguage of the LiteralExpression element.
The expressionLanguage of the importedValues element identifies how the imported text is selected from the
imported document. For example, if the importType indicates an XML document, the expressionLanguage of
importedvalues could be XPATH 2.0.

LiteralExpression inherits of all the attributes and model associations of Expression. Table 25 presents the
additional attributes and model associations of the LiteralExpression element.

Table 25: LiteralExpression attributes and model associations

Attribute Description

text: string [0..1] The text of this LiteralExpression. It SHALL be a valid
expression in the expressionLanguage.

expressionLanguage: anyURI [0..1] This attribute identifies the expression language used in this
LiteralExpression. This value overrides the expression language
specified for the containing instance of
DecisionRequirementDiagram. The language SHALL be
specified in a URI format.

importedValues: Importedvalues [0..1] The instance of ImportedValues that specifies where the text of
this LiteralExpression is located.

7.3.5 Invocation metamodel

Invocation is a mechanism that permits the evaluation of one value expression — the invoked expression — inside another
value expression — the invoking expression — by binding locally the input variables of the invoked expression to values
inside the invoking expression. In an invocation, the input variables of the invoked expression are usually called:
parameters. Invocation permits the same value expression to be re-used in multiple expressions, without having to
duplicate it as a sub-expression in all the using expressions.

The class Invocation is used to model invocations as a kind of Expression: Invocation is a concrete
specialization of Expression.

An instance of Invocation is made of zero or more binding, which are instances of Binding, and model how the
bindingFormulas are bound to the formalParameters of the invoked function. The formalParameters of a

Decision Model and Notation 1.1 68




FunctionDefinition are InformationItems and the parameters of the Bindingsare InformationItems.
The binding is by matching the InformationItem names.

An Invocation contains a calledFunction, an Expression, which must evaluate to a function. Most
commonly, itisa LiteralExpression naming a BusinessKnowledgeModel.

The value of an instance of Invocation is the value of the associated calledFunction's body, with its
formalParameters assigned values at runtime per the bindings in the Invocation.

Invocation MAY be used to model invocations in decision models, when a Decision element has exactly one
knowledgeRequirement element, and when the decisionLogic in the Decision element consists only in
invoking the BusinessKnowledgeModel element that is referenced by that requiredKnowledge and a more
complex value expression is not required.

Using Invocation instances as the decisionLogic in Decision elements permits the re-use of the
encapsulatedLogic of a BusinessKnowledgeModel as the logic for any instance of Decision that requires
that BusinessKnowledgeModel, where each requiring Decision element specifies its own bindings for the
encapsulatedLogic's parameters.

The calledFunction that is associated with the Invocation element SHALL BE the encapsultedLogic of
the BusinessKnowledgeModel element that is required by the Decision element that contains the Invocation.
The Invocation element SHALL have exactly one binding for each parameter in the
BusinessKnowledgeModel's encapsulatedLogic.

Invocation inherits of all the attributes and model associations of Expression. Table 26 presents the additional
attributes and model associations of the Invocation element.

Table 26: Invocation attributes and model associations

Attribute Description

calledFunction: Expression [1] An expression whose value is a function.

binding: Binding [*] This attribute lists the instances of Binding used to bind the
formalParameters of the calledFunction in this
Invocation.

7.3.6 Binding metamodel

The class Binding is used to model, in an Invocation element, the binding of the calledFunction's
formalParameters to values.

A Binding is made of one bindingFormula, which is an Expression, and of one parameter, which is an
InformationItem.

The parameter names in the Binding elements SHALL be a subset of the formalParameters of the
calledFunction.

When the ITnvocation element is executed, each InformationItem element that is referenced as a parameter
by a binding in the Invocation element is assigned, at runtime, the value of the bindingFormula.

Table 27 presents the attributes and model associations of the Binding element.

Decision Model and Notation 1.1 69




Table 27: Binding attributes and model associations

Attribute

Description

parameter: InformationItem

The InformationItem on which the calledFunction of the
owning instance of Invocation depends that is bound by this
Binding.

bindingFormula: Expression [0..1]

The instance of Expression to which the parameter in this
Binding is bound when the owning instance of Invocation is
evaluated.

Decision Model and Notation 1.1

70




8 Decision Table

8.1 Introduction

One of the ways to express the decision logic corresponding to the DRD decision artifact is as a decision table. A decision
table is a tabular representation of a set of related input and output expressions, organized into rules indicating which
output entry applies to a specific set of input entries. The decision table contains all (and only) the inputs required to
determine the output. Moreover, a complete table contains all possible combinations of input values (all the rules).

Decision tables and decision table hierarchies have a proven track record in decision logic representation. It is one of the
purposes of DMN to standardize different forms and types of decision tables.

A decision table consists of:

e An information item name: the name of an Informationltem, if any, for which the decision table is its value
expression. This will usually be the name of the Decision or Business Knowledge Model for which the decision
table provides the decision logic.

e Alist of input clauses (zero or more). Each input clause is made of an input expression and optional allowed
values for the input entries that correspond to the clause. The input entries are contained in the rules, and the i®
input entry corresponds to the i input clause.

e A list of output clauses (one or more). Each output clause is made of a name and optional allowed values for the
output entries that correspond to the clause. The output entries are contained in the rules, and the ith output entry
corresponds to the ith output clause. A single output clause has no name. Two or more output clauses describe a
decision table that returns a context for each hit with an entry for each output clause. Each of the multiple output
clauses SHALL be named.

e A set of outputs (one or more). A single output has no name, only a value. Two or more outputs are called
output components. Each output component SHALL be named. Each output (component) SHALL specify an
output entry for each rule. The specification of output component name (if multiple outputs) and all output
entries is referred to as an output clause.

e A list of annotation clauses (zero or more). Each annotation clause is made of a name. Each annotation SHALL
be named as part of a rule annotation clause. The annotation entries are contained in the rules, and the i"
annotation entry corresponds to the i annotation clause.

e A list of rules (one or more) in rows or columns of the table (depending on orientation), where each rule is
composed of the specific input entries, output entries and optional rule annotations of the table row (or column).
If the rules are expressed as rows, the columns are clauses, and vice versa.

Decision Model and Notation 1.1 71



Information item name

Rules in columns

Input entry
Input expression \ Discount /
\“' Customer | Business, Private Business Prr'vcée P Irrelevant
Inputs and outputs ey I Order size <10, >=10 <10 >=10 yd
in rows > Discount 0.05, 0.10, 0.15 0.10 0.15 0.05 Output entry
Description I \ Desc 1 Desc 2 Desc 3
Ref Ref 4 Ref 4 Ref 5
Output label Amerra / \ e{ e; ‘\ e;
/ : 1 \ —~ Rule number
: : Optional default
Optional annotation output entry Annotation entry
Hit palicy indicator Optional allowed
values
Figure 8.1: Decision table example (vertical orientation: rules as columns)
Input expression Inputs and outputs Output label | Optional default
Information item name In columns / output entry
/ Optional allowed values
Optional annotations
Hit policy indicator N\ Discount l \ | l l
N U Customer Order size Disgbunt Description | Reference
7
Business, Private <10, >=10 0.05,0.10,0.15
[ | <10 0.10 Desc 1 Ref 4
- Business /
Rulesinrows |===p» | 2 >=10 0.15 Desc 2 Ref 4
—- 3|, Private \\ - < 0.05 \\ Desc 3 Ref 5
Rule numbers Input entry Irrelevant Output entry Annotation entry

Figure 8.2: Decision table example (horizontal orientation: rules as rows)

Figure 8.3: Decision table example (vertical orientation, multiple output components)

Decision Model and Notation 1.

1




Figure 8.4: Decision table example (horizontal orientation, multiple output components)

The decision table shows the rules in a shorthand notation by arranging the entries in table cells. This shorthand notation
shows all inputs in the same order in every rule and therefore has a number of readability and verification advantages.

For example:

Customer OrderSize Discount

Business <10 0.10

reads as:

If Customer = “Business” and OrderSize < 10 then Discount = 0.10

In general, this is expressed as:

input expression 1 input expression 2 Output label

input entry a input entry b output entry c

The three highlighted cells in the decision table fragment above represent the following rule:
If the value of input expression 1 satisfies input entry a
and the value of input expression 2 satisfies input entry b
then the rule matches and the result of the decision table is output entry c.

An input expression value satisfies an input entry if the value is equal to the input entry, or belongs to the list of values
indicated by the input entry (e.g. a list or a range). If the input entry is ‘-’ (meaning irrelevant), every value of the input
expression satisfies the input entry and that particular input is irrelevant in the specified rule.

A rule matches if the value of every input expression satisfies the corresponding input entry. If there are no input entries,
any rule matches.

The list of rules expresses the logic of the decision. For a given set of input values, the matching rule (or rules) indicate
the resulting value for the output name. If rules overlap, multiple rules can match and a Aif policy indicates how to handle
the multiple matches.

If two input entries of the same input expression share no values, the entries (cells) are called disjoint. If there is an
intersection, the entries are called overlapping (or even equal). ‘Irrelevant’ (‘-”) overlaps with any input entry of the input
expression.

Two rules are overlapping if all corresponding input entries are overlapping. A specific configuration of input data may
then match the two rules.

Two rules are disjoint (non-overlapping) if at least one pair of corresponding input expressions is disjoint. No specific
configuration of input data will match the two rules.

If tables are allowed to contain overlapping rules, the table hit policy indicates how overlapping rules have to be handled
and which is the resulting value(s) for the output name, in order to avoid inconsistency.

Decision Model and Notation 1.1 73



8.2 Notation

This section builds on the generic notation for decision logic and boxed expressions defined in clause 7.2.
A decision table representation standardizes:
e the orientation (rules as rows, columns or crosstab), as shown by the table

e placement of inputs, outputs and (optional) allowed values in standard locations on a grid of cells. Each input
expression is optionally associated with unary tests restricting the allowed input values. In this text the optional
cells with allowed values are indicated in . Each output (component) is optionally associated with allowed
values. In this text the optional allowed output values are indicated in

e line style and optional use of color
e the contents of specific rule input and output entry cells
e the hit policy, indicating how to interpret overlapping input combinations

e placement of information item name, hit policy (H) and rule numbers as indicated in Figure 8.5, Figure 8.7 and
Figure 8.9 Rule numbers are consecutive natural numbers starting at 1. Rule numbering is required for tables
with hit indicator F (first) or R (rule order), because the meaning depends on rule sequence. Crosstab tables have
no rule numbers. Rule numbering is optional for other table types.

Input expressions, input values, output values, input entries and output entries can be any text (e.g. natural language,
formal language, pseudo-code). Implementations claiming level 2 or 3 conformance SHALL support (S-)FEEL syntax.
Implementations claiming level 1 conformance are not required to interpret the expressions. To avoid misinterpretation
(e.g. when expressions are not meant to be valid (S-)FEEL but may conflict with the look and feel of (S-)FEEL syntax),
conformant implementations SHOULD indicate when the input expression is not meant to be interpreted by using the
URI: "http://www.omg.org/spec/DMN/uninterpreted/20140801".

8.2.1 Line style and color

Line style is normative. There is a double line between the input clauses and output clauses, continuing between the input
entries and the output entries. There is also a double line between the output clauses and the annotation clauses,
continuing between the output entries and the annotation entries. These two double lines are parallel to each other. There
is a third double line, that intersects at right angles with the previous two, between input clauses and the input entries,
continuing between the output clauses and the output entries, and continuing between the annotation clauses and the
annotation entries. All other cells are separated by a single line.

Color is suggested, but does not influence the meaning. It is considered good practice to use different colors for the input
clauses, the output clauses, and the annotation clauses, and another (or no) color for the input, output, and annotation
entries.

8.2.2 Table orientation

Depending on size, a decision table can be presented horizontally (rules as rows), vertically (rules as columns), or
crosstab (rules composed from two input dimensions). Crosstab tables can only have the default hit policy (see later).

Decision table inputs and outputs should not be mixed. In a horizontal table, all input columns SHALL be represented on
the left of all output columns. In a vertical table, all the input rows SHALL be represented above all output rows. In a
crosstab, all the output cells SHALL be in the bottom-right part of the table.

The table SHALL be arranged in one of the following ways (see Figure 8.5, Figure 8.7, Figure 8.9). Cells indicated in
are optional.

The input cell entry ‘-” means ‘irrelevant’. HC is a placeholder for hit policy indicator (e.g. U, A, F, ...).

Decision Model and Notation 1.1 74



information item name

H input expression 1

input expression 2

Output label

input entry 2.1

output entry 1.1

input entry 1.1

input entry 2.2

output entry 1.2

3 input entry 1.2

output entry 1.3

Figure 8.5: Rules as rows — schematic layout

Discount
U Customer OrderSize Delivery Discount
Business, Private,
Government <10, >=10 sameday, slow 0, 0.05, 0.10, 0.15
1 ) <10 - 0.05
Business
2 >=10 - 0.10
3 ) sameday 0
Private -
4 slow 0.05
5 Government - - 0.15
Figure 8.6: Rules as rows — example
information item name
. . . input entry
input expression 1 input entry 1.1 12
. . input entry input entry
input expression 2 21 29
output entry | output entry | output entry
Output label 11 12 13
H 1 2 3
Figure 8.7: Rules as columns — schematic layout
Discount
Customer Business, Private, Business Private Government
Government
Ordersize <10, >=10 <10 >=10 - -
Delivery sameday, slow - - sameday slow -
Discount 0, 0.05,0.10,0.15 |[ 0.05 | 0.10 0 0.05 0.15
U 1 2 3 4 5

Figure 8.8: Rules as columns — example

Decision Model and Notation 1.1

75



information item name

input expression 1
Output label input entry input entry

1.1 1.2
input entry output entry output entry

input expression 2.1 1.1 1.3
2 input entry | output entry | output entry

2.2 1.2 1.4

Figure 8.9: Rules as crosstab - schematic layout (optional input and output values not shown)

Discount
. Customer
Discount - -
Business Private Government
<10 0.05 0 0.15
Ordersize
=10 0.10 0 0.15

Figure 8.10: Rules as crosstab - simplified example with only two inputs

Discount
Customer, Delivery
Discount Business Private Government
- sameday slow -
<10 0.05 0 0.05 0.15
Ordersize
>=10 0.10 0 0.05 0.15




Figure 8.11: Rules as crosstab - example with three inputs

Crosstab tables with more than two inputs are possible (as shown in Figure 8.11).

8.2.3 Input expressions
Input expressions are usually simple, for example, a name (e.g. CustomerStatus) or a test (e.g. Age<25).

The order of input expressions is not related to any execution order in implementation.

8.2.4 Input values

Input expressions may be expected to result in a limited number or a limited range of values. It is important to model
these expected input values, because a decision table will be considered complete if its rules cover all combinations of
expected input values for all input expressions.

Regardless of how the expected input values are modeled, input values SHOULD be exclusive and complete. Exclusive
means that input values are disjoint. Complete means that all relevant input values from the domain are present.

For example, the following two input value ranges overlap: <5, <10. The following two ranges are incomplete: <5, >5.

The list of input values is optional. If provided, it is a list of unary tests that must be satisfied by the corresponding input.

8.2.5 Information Iltem names, output labels, and output component names
A decision table with multiple output components SHALL specify a name for each output component.

A decision table that is the value expression of an Informationltem (e.g. a Decision's logic or a boxed Invocation's binding
formula) SHALL specify the name of the InformationItem as its Information Item name. A decision table that is not
contained in another boxed expression shall place the Information Item name in a name box just above and adjoining the
table.

A decision table that is contained in another boxed expression may use the containing expression for its Information Item
name. For example, the Information Item name for a decision table bound to a function parameter is the name of the
function parameter. Or, to save space, the Information Item name box may be omitted and the Output label used instead.

Output values
The output entries of a decision table are often drawn from a list of output values.
The list of output values is optional. If provided, it is a list restricting output entries to the given list of values.

When the hit policy is P (priority), meaning that multiple rules can match, but only one hit should be returned, the
ordering of the list of output values is used to specify the (decreasing) priority.

The ordering of the list of output values is also used when the hit policy is output order.

Decision Model and Notation 1.1 77



8.2.6 Multiple outputs

The decision table can show a compound output (see Figure 8.12, Figure 8.13, and Figure 8.14).

information item name

H output label

input expression 1 input expression 2
output component 1

output component 2

. input entry 2a output entry 1.1 output entry 2.1
input entry 1a -

input entry 2b output entry 1.2 output entry 2.2
input entry 1b - output entry 1.3 output entry 2.3

Figure 8.12: Horizontal table with multiple output components

information item name
input expression 1 input entry 1a input entry 1b
input expression 2 input entry 2a input entry 2b -
output
component output entry 1.1 output entry 1.2 output entry 1.3
output 1
label output
component output entry 2.1 output entry 2.2 output entry 2.3
2
H 1 2 3

Decision Model and Notation 1.1

78



Figure 8.13: Vertical table with multiple output components

information item name
output label input expression 1
output component 1,
output component 2 input entry 1a input entry 1b
input entry output entry 1.1, output entry 1.3
input expression 2a output entry 2.1 output entry 2.3
2 input entry output entry 1.2, output entry 1.4,
2b output entry 2.2 output entry 2.4

Figure 8.14: Crosstab with multiple output components

8.2.7 Input entries

Rule input entries are expressions.
A dash symbol (*-’) can be used to mean any input value, i.e., the input is irrelevant for the containing rule.

The input entries in a unary test SHOULD be ‘-’ or a subset of the input values specified. For example, if the input values
for input ‘Age’ are specified as [0..120], then an input entry of <0 SHOULD be reported as invalid.

Tables containing at least one ‘-’ input entry are called contracted tables. The others are called expanded.

‘

Tables where every input entry is true, false, or ‘-’ are historically called limited-entry tables, but there is no need to
maintain this restriction.

Evaluation of the input expressions in a decision table does not produce side-effects that influence the evaluation of other
input expressions. This means that evaluating an expression or executing a rule should not change the evaluation of other
expressions or rules of the same table. This is particularly important in first hit tables where the rules are evaluated in a
predefined sequence: evaluating or executing a rule should not influence other rules.

Decision Model and Notation 1.1 79



8.2.8 Merged input entry cells

Adjacent input entry cells from different rules, with the same content and same (or no) prior cells can be merged, as
shown in Figure 8.15 and Figure 8.16. Rule output cells cannot be merged (except in crosstabs).

information item name

H input expression 1 input expression 2 Output label

1 . input entry 2a output entry 1.1
input entry 1a -

2 input entry 2b output entry 1.2

3 input entry 1b - output entry 1.3

Figure 8.15: Merged rule input cells allowed

information item name

H input expression 1 input expression 2 Output label

1 . input entry 2a output entry 1.1
input entry 1a

2 output entry 1.2

3 output entry 1.3
input entry 1b P y

4 input entry 2a output entry 1.4

Figure 8.16: Merged rule input cells not allowed

8.2.9 Output entry

A rule output entry is an expression.

Rule output cells cannot be merged (except in crosstabs, where adjacent output cells with the same content can be
merged).
Shorthand notation

In vertical (rules as columns) tables with a single output name (equal to the information item name), a shorthand notation
may be used to indicate: output value applies (‘X’) or does not apply (‘-’), as is common practice in decision tables.

Because there can be only one output entry for an output name, every rule must indicate no more than one ‘X’. The other
output entries must contain ‘-’.

The table in Figure 8.17 is shorthand notation for the table in Figure 8.18. It is called shorthand , because the output
entries need not be (re-)written in every column, but are indicated with a one-character notation (‘X’ or ‘-’), thereby

saving space in vertical tables, which tend to expand in width as the number of rules increases. The output values are
written only once, before the rules, in the output expression part.

If an information item name is provided, and there is only one output name (which has to be equal to the information item
name), the output name is optional.

Decision Model and Notation 1.1 80



Applicant Risk Rating

Applicant Age <25 [25..60] > 60
Medical History good | bad - good | bad
Low X - - - -
Medium - X X X -
High - - - - X
U 1 2 3 4 5

Figure 8.17: Shorthand notation for vertical tables (rules as columns)

Applicant Risk Rating

Applicant Age <25 [25..60] > 60

Medical History good bad - good bad

Applicant Risk Rating Low Medium Medium Medium High
U 1 2 3 4 5

Figure 8.18: Full notation for vertical tables (rules as columns)

8.2.10 Hit policy

A decision table normally has several rules. As a default, rules do not overlap. If rules overlap, meaning that more than
one rule may match a given set of input values, the hit policy indicator is required in order to recognize the table type and
unambiguously understand the decision logic. The hit policy can be used to check correctness at design-time.

The hit policy specifies what the result of the decision table is in cases of overlapping rules, i.e. when more than one rule
matches the input data. For clarity, the hit policy is summarized using a single character in a particular decision table cell.
In horizontal tables this is the top-left cell (Error: Reference source not found) and in vertical tables this is the bottom-left
cell (Error: Reference source not found). The character is the initial letter of the defined hit policy (Unique, Any, Priority,
First, Collect, Output order or Rule order). Crosstab tables are always Unique and need no indicator.

The hit policy SHALL default to Unique, in which case the hit indicator is optional. Decision tables with the Unique hit
policy SHALL NOT contain overlapping rules.

Tools may support only a nonempty subset of hit policies, but the table type SHALL be clear and therefore the hit policy
indication is mandatory, except for the default unique tables. Unique tables SHALL always be supported.

Single and multiple hit tables

A single hit table shall return the output of one rule only; a multiple hit table may return the output of multiple rules (or a
function of the outputs, e.g. sum of values). If rules are allowed to overlap, the hit policy indicates how overlapping rules
have to be interpreted.

The initial letter for hit policy also identifies if a table is single hit or multiple hit.

A single hit table may or may not contain overlapping rules, but returns the output of one rule only. In case of overlapping
rules, the hit policy indicates which of the matching rules to select. Some restrictions apply to tables with compound
outputs.

Single hit policies for single output decision tables are:

1. Unique: no overlap is possible and all rules are disjoint. Only a single rule can be matched. This is the default.

Decision Model and Notation 1.1 81



2. Any: there may be overlap, but all the matching rules show equal output entries for each output (ignoring rule
annotations), so any match can be used. If the output entries are non-equal (ignoring rule annotations), the hit
policy is incorrect and the result is undefined.

3. Priority: multiple rules can match, with different output entries. This policy returns the matching rule with the highest
output priority. Output priorities are specified in the ordered list of output values, in decreasing order of priority.
Note that priorities are independent from rule sequence.

4. First: multiple (overlapping) rules can match, with different output entries. The first hit by rule order is returned (and
evaluation can halt). This is still a common usage, because it resolves inconsistencies by forcing the first hit.
However, first hit tables are not considered good practice because they do not offer a clear overview of the
decision logic. It is important to distinguish this type of table from others because the meaning depends on the
order of the rules. The last rule is often the catch-remainder. Because of this order, the table is hard to validate
manually and therefore has to be used with care.

A multiple hit table may return output entries from multiple rules. The result will be a list of rule outputs or a simple
function of the outputs.

Multiple hit policies for single output decision tables can be:

5. Output order: returns all hits in decreasing output priority order. Output priorities are specified in the ordered list of
output values in decreasing order of priority.

6. Rule order: returns all hits in rule order. Note: the meaning may depend on the sequence of the rules.

7. Collect: returns all hits in arbitrary order. An operator (‘+’, *<’, *>’, ‘#’) can be added to apply a simple function to
the outputs. If no operator is present, the result is the list of all the output entries.

Collect operators are:

a) + (sum): the result of the decision table is the sum of all the outputs.

b) < (min): the result of the decision table is the smallest value of all the outputs.

¢) > (max): the result of the decision table is the largest value of all the outputs.

d) # (count): the result of the decision table is the number of outputs.

Other policies, such as more complex manipulations on the outputs, can be performed by post-processing the output
list (outside the decision table).

Decision tables with compound outputs support only the following hit policies: Unique, Any, Priority, First, Output order,
Rule order and Collect without operator, because the collect operator is undefined over multiple outputs. This restriction
ignores rule annotations of which there may be multiple regardless of the hit policy specified.

For the Priority and Output order hit policies, priority is decided in compound output tables over all the outputs for which
output values have been provided (ignoring rule annotations). The priority for each output is specified in the ordered list
of output values in decreasing order of priority, and the overall priority is established by considering the ordered outputs
from left to right in horizontal tables (i.e. columns to the left take precedence over columns to the right), or from top to
bottom in vertical tables. Outputs for which no output values are provided are not taken into account in the ordering,
although their output entries are included in the ordered compound output.

So, for example, if called with Age = 17, Risk category = “HIGH” and Debt review = true, the Routing rules table in
Figure 8.19 would return the outputs of all four rules, in the order 2, 4, 3, 1.

Routing rules
0] Age Risk Debt Routing Review Reason
category review level
LOW, DECLINE, | LEVEL2,
MEDIUM, REFER, LEVEL 1,
HIGH ACCEPT NONE

Decision Model and Notation 1.1 82



1 - - - ACCEPT NONE Acceptable

2 <18 - - DECLINE NONE Applicant too young

3 - HIGH - REFER LEVEL 1 High risk application

4 - - true REFER LEVEL 2 | Applicant under debt review

Figure 8.19: Output order with compound output

Note 1

Crosstab tables are unique and complete by definition and therefore do not need a hit policy.

Note 2

The sequence of the rules in a decision table does not influence the meaning, except in First tables (single hit) and
Rule order tables (multiple hit). These tables should be used with care.

8.2.11 Default output values

Tables may specify a default output. The default value is underlined in the list of output values.

Decision Model and Notation 1.1

83



8.3 Metamodel

DMNElement

+putputValues

+allowedValues

T UnaryTestis ppy ks InputClause
5 0.1
+inputEntry
. = fordered +input|0..* {ordered}
+inputExpression
LiteralExpression
+defaultCutputEntry 0.1 Aot DecisionRule
0. +putputEntry +ruleCutput
+foutputDefinition [e mpefinition 1%
01 {ordered +rule | 0..* {ordered} +ruleAnnotation
+type 0.1 +value (= -
T
0:* 0.* | +annotationEntry
RuleAnnotation
l +text [0..1]
OutpuiClause DecisionTable
T +hitPolicy ; HitPolicy [1] = UNIQUE +decisionTabls
+nama. = r||2ntg[ --GJ 11 | soutput +aggregation : BuitinAggregator [0..1)
gopE g [0.] ) +preferredOrientation | DecisionTableOrientation [0..1]
{ordered} +outputlabel : String [0..1] ~annotation |RuleAnnotationClause
+name : String [1
0.* fordersd: altl
«Enumerations
HitPolicy
UNIQUE &enumerations
FIRST wenumerations BuiltinAggregator
PRIORTY . 3 L
ANY DecisionTableOrientation SUM
COLLECT Rule-as-Row COUNT
RULE ORDER Rule-as-Column MIN
OUTPUT ORDER CrossTable MAX

Figure 8.20: DecisionTable class diagram

8.3.1 Decision Table metamodel
The class DecisionTable is used to model a decision table.
DecisionTable is a concrete specialization of Expression.

An instance of DecisionTable contains a list of rules which are instances of DecisionRule, a list of inputs which
are instances of InputClause, a list of outputs which are instances of OutputClause, and a list of annotations
which are instances of RuleAnnotationClause.

It has a preferredOrientation, which SHALL be one of the enumerated DecisionTableOrientation:
Rule-as-Row, Rule-as-Column or CrossTable. An instance of DecisionTable SHOULD BE represented
as specified by its preferredOrientation, as defined in clause 8.2.2.

An instance of DecisionTable has an associated hitPolicy, which SHALL be one of the enumerated
HitPolicy: UNIQUE, FIRST, PRIORITY, ANY, COLLECT, RULE ORDER, OUTPUT ORDER. The default value for
the hitPolicy attribute is: UNIQUE. In the diagrammatic representation of an instance of DecisionTable, the
hitPolicy is represented as specified in clause 8.2.10.

Decision Model and Notation 1.1 84



The semantics that is associated with an instance of DecisionTable depends on its associated hitPolicy, as
specified below and in clause 8.2.10. The hitPolicy attribute of an instance of DecisionTable is represented as
specified in clause 8.2.10.

If the hitPolicy associated with an instance of DecisionTable is FIRST or RULE ORDER, the rules that are
associated with the DecisionTable SHALL be ordered. The ordering is represented by the explicit numbering of
the rules in the diagrammatic representation of the DecisionTable.

If the hitPolicy associated with an instance of DecisionTable is PRIORITY or OUTPUT ORDER, the
outputValues determine the result as specified in clause 8.2.10.

If the hitPolicy that is associated with an instance of DecisionTable is COLLECT, the DecisionTable MAY
have an associated aggregation, which is one of the enumerated BuiltinAggregator (see clause 8.2.10).

As akind of Expression, an instance of DecisionTable has a value, which depends on the outputs of the
associated rules, the associated hitPolicy and the associated aggregration, if any. The value of an instance of
DecisionTable is determined according to the specification in clause 10.3.2.8.

DecisionTable inherits all the attributes and model associations from Expression. Table 28 presents the
additional attributes and model associations of the DecisionTable element.

Table 28: DecisionTable attributes and model associations

Attribute Description

input: TnputClause [*] This attributes lists the instances of InputClause that compose
this DecisionTable.

output: OutputClause [*] This attributes lists the instances of OutputClause that compose
this DecisionTable.

rule: DecisionRule [*] This attributes lists the instances of DecisionRule that compose
this DecisionTable.

hitPolicy: HitPolicy The hit policy that determines the semantics of this
DecisionTable. Default is: UNIQUE.

aggregation: BuiltinAggregator If present, this attribute specifies the aggregation function to be
applied to the unordered set of values of the applicable rules to
determine the value of this DecisionTable when the
hitPolicy is COLLECT.

preferredOrientation: The preferred orientation for the diagrammatic representation of this
DecisionTableOrientation [0..1] DecisionTable. This DecisionTable SHOULD BE
represented as specified by this attribute.

outputLabel: string[0..1] This attribute gives a description of the decision table output, and is
often the same as the name of the InformationItem for which
the decision table is the value expression.

Decision Model and Notation 1.1 85




8.3.2 Decision Table Input and Output metamodel

InaDecisionTable, an input specifies an inputExpression (the subject) and a number of inputEntries.
An output specifies the name and the domain of definition of an output value, a number of outputEntries.

The class InputClause is used to model a decision table input, and the class OutputClause is used to model a
decision table output, and the class RuleAnnotationClause is used to model a decision table annotation.

An instance of TnputClause is made of an optional inputExpression and an ordered list of inputEntry,
which are instances of UnaryTests. An instance of OutputClause optionally references a t ypeRe £, specifying its
datatype, and it is made of an ordered list of outputEntry, which are instances of LiteralExpression, and an
optional defaultOutputEntry, which is also an instance of LiteralExpression. An instance of

RuleAnnotationClause contains a name of type String.

When a DecisionTable contains more than one OutputClause, each OutputClause SHALL have a name.
When a DecisionTable has a single OutputClause, the OutputClause SHALL NOT have a name. A

RuleAnnotationClause SHALL have a name.

Table 29, Table 30 and Table 31 present the attributes and model associations of InputClause, OutputClause and

RuleAnnotationClause respectively.

Table 29: InputClause attributes and model associations

Attribute

Description

inputExpression: Expression [0..1]

The subject of this InputClause.

inputValues: UnaryTests [0..1]

This attribute contains UnaryTests that constrain the
result of the inputExpression of this InputClause.

Table 30: OutputClause attributes and model associations

Attribute

Description

typeRef: String [1]

The OutputClause of a single output decision table
SHALL NOT specify a typeRef. OutputClauses ofa
multiple output decision table MAY specify a typeRef. A
typeRef is the name of the datatype of the output, either
an ItemDefinition, a base type in the specified
expressionLanguage, or an imported type.

name: string [0..1]

The OutputClause of a single output decision table
SHALL NOT specify a name. OutputClauses of a
multiple output decision table SHALL specify a name.

outputValues: UnaryTests [0..1]

This attribute contains UnaryTests that constrain the
result of the outputEntrys of the DecisionRules
corresponding to this OutputClause.

Decision Model and Notation 1.1

86




defaultOutputEntry: Expression [0..1] In an Incomplete table, this attribute lists an instance of
Expression that is selected when no rules match for the
decision table.

Table 31: RuleAnnotationClause attributes and model associations

Attribute Description

name: string [1] RuleAnnotationClause SHALL specify a name that
is used as the name of the rule annotation column of the
containing decision table.

8.3.3 Decision Rule metamodel
The class DecisionRule is used to model the rules in a decision table (see clause 8.2).

An instance of DecisionRule has an ordered list of inputEntry instances which are instances of UnaryTests, an
ordered list of outputEntry instances, which are instances of LiteralExpression, and an ordered list of
ruleAnnotations.

In a tabular representation of the containing instance of DecisionTable, the representation of an instance of
DecisionRule depends on the orientation of the decision table. For instance, if the decision table is represented
horizontally (rules as row, see clause 8.2.2), instances of DecisionRule are represented as rows, with all the
inputEntrys represented on the left of all the outputEntrys, and all the ruleAnnotations represented to their
right.

By definition, a DecisionRule element that has no inputEntrys is always applicable. Otherwise, an instance of
DecisionRule is said to be applicable if and only if, at least one of the rule's inputEntrys match their
corresponding inputExpression value. The inputEntrys are matched in arbitrary order.

The inputEntry elements SHALL be in the same order as the containing DecisionTable's inputs.

«th

The i" inputExpression must satisfy the i inputEntry for all inputEntrys in order for the DecisionRule
to match, as defined in section 8.1.

The outputEntry elements SHALL be in the same order as the containing DecisionTable's outputs.
The i" outputEntry SHALL be consistent with the t ypeRef of the i OutputClause.

The ruleAnnotation elements SHALL be in the same order as the containing DecisionTable's annotations. The
i" ruleAnnotation refers to the i RuleAnnotationClause.

Table 32 presents the attributes and model associations of the DecisionRule element.

Table 32: DecisionRule attributes and model associations

Attribute Description

inputEntry: UnaryTests[0..*] The instances of UnaryTests that specify the input
conditions that this DecisionRule must match for the
corresponding (by index) inputExpression.

Decision Model and Notation 1.1 87




outputEntry: LiteralExpression [1..*]

A list of the instances of LiteralExpression that
compose the output components of this DecisionRule.

annotationEntry: RuleAnnotation [0..*]

A list of the instances of RuleAnnotation that compose
the annotations of this DecisionRule and match the
corresponding (by index) instances of
RuleAnnotationClause.

8.4 Examples

Table 33 provides examples for the various types of decision table discussed in this section. Further examples may be
found in Error: Reference source not found, in the context of a complete example of a DMN decision model.

Table 33: Examples of decision tables

Single Hit
Unique Applicant Risk Rating
u Applicant Age Medical History Applicant Risk Rating
1 good Medium
> 60
2 bad High
3 [25..60] - Medium
4 L
<25 good ow
5 bad Medium
Applicant Risk Rating
Applicant Age <25 [25..60] > 60
Medical History good bad - good bad

Applicant Risk Rating

Low Medium Medium Medium High

U 1 2 3 4 5
Applicant Risk Rating
Applicant Age <25 [25..60] > 60
Medical History good bad - good bad
Low X - - - -
Medium X X X
High

u 1 2 3 4 5

Decision Model and Notation 1.1

88




Single Hit

Any Person Loan Compliance
A Persons Credit Person Credit Person Education Person Loan
Rating from Bureau Card Balance Loan Balance Compliance
1 A < 10000 < 50000 Compliant
2 Not(A) - - Not Compliant
3 - >= 10000 - Not Compliant
4 - - >= 50000 Not Compliant
Example case: not A, >= $10K, >= 50K -> Not Compliant (rules 2,3,4)
Single Hit
Priority Applicant Risk Rating
P Applicant Age Medical History Applicant Risk Rating
High, Medium, Low
1 >=25 good Medium
2 > 60 bad High
3 - bad Medium
4 <25 good Low
Single Hit
First

Special Discount

Example case: Web, non-US, Retailer -> 0 (rule 3)

F Type of Order Customer Location | Type of Customer Special Discount %
1 Web us Wholesaler 10
2 Phone - -
3 - Non-US -
4 - - Retailer
Special Discount
Type of Order Web -
Customer Location us -
e QST Whof’esale Retralle i
Special Discount % 10 5 0
F 1 2 3

Decision Model and Notation 1.1

89




Multiple Hit

No order Holidays
Age - <18 >=60 - [18..60) | >=60 -
Years of Service - - - >=30 | [15..30) - >=30
Holidays 22 5 3
C+ 1
Example case: Age=58, Service=31 -> Result=sum(22, 5, 3)=30
Multiple Hit
Output order Holidays
o Age Years of Service Holidays
22,5, 3 2
1 - - 22
2 >= 60 - 3
3 - >=30 3
4 <18 - 5
5 >=60 - 5
6 - >=30 5
7 [18..60) [15..30) 2
8 [45..60) <30 2
Example case: Age=58, Service=31 -> Result=(22, 5, 3)
Multiple Hit
Rule order Student Financial Package Eligibility
R Student | Student Extra- | Student National Student Financial Package
GPA Curricular Honor Society Eligibility List
Activities Membership
Count
1 >3.5 >=4 Yes 20% Scholarship
2 >3.0 - Yes 30% Loan
3 >3.0 >=2 No 20% Work-On-Campus
4 <=3.0 - - 5% Work-On-Campus

Example case: For GPA=3.6, EC Activities=4, NHS Membership -> result = (20% scholarship,

30% loan)

Decision Model and Notation 1.1

90




Decision Model and Notation 1.1

This page intentionally left blank.

91



9
9.1

Simple Expression Language (S-FEEL)

Introduction

DMN 1.1 defines the friendly enough expression language (FEEL) for the purpose of giving standard executable
semantics to many kinds of expressions in decision model (see clause 10).

This section defines a simple subset of FEEL, S-FEEL, for the purpose of giving standard executable semantics to
decision models that use only simple expressions: in particular, decision models where the decision logic is modeled
mostly or only using decision tables

9.2 S-FEEL syntax

The syntax for the S-FEEL expressions used in this section is specified in the EBNF below: it is a subset of the FEEL
syntax and the production numbering is from the FEEL EBNF, clause 10.3.1.1.

Grammar rules:

1.
4
4.a
4.b
4.c
4.d
5

6

7
7.a
7.b
8

9

10
11
12
13
14
14.a
14.b
14.c
18
19
20

expression = simple expression ;

arithmetic expression =
addition | subtraction |
multiplication | division |
exponentiation |
arithmetic negation ;
simple expression = arithmetic expression | simple value | comparison ;

"

simple expressions = simple expression , { "," , simple expression } ;

simple positive unary test =

[ ||<" ‘ "<=" | ">" ‘ ||>=" ] s endpoint |

interval ;
interval = ( open interval start | closed interval start ) , endpoint, ".." , endpoint , ( open interval end | closed interval
end) ;

open interval start ="("|"]" ;
closed interval start ="[";
open interval end =")" | "[";
closed interval end ="]" ;
simple positive unary tests = simple positive unary test, { "," , simple positive unary test } ;
simple unary tests =
simple positive unary tests |
"not", "(", simple positive unary tests, ")" |

"non,
>

endpoint = simple value ;
simple value = qualified name | simple literal ;

qualified name = name , { "." , name } ;

Decision Model and Notation 1.1 92



21 addition = expression , "+" , expression ;

22 subtraction = expression , "-" , expression ;

23 multiplication = expression , "*" , expression ;

24 division = expression , "/" , expression ;

25 exponentiation = expression, "**" expression ;

26  arithmetic negation = "-" , expression ;

27 name = name start , { name part | additional name symbols } ;
28 name start = name start char, { name part char } ;

29 name part = name part char , { name part char } ;

30 name start char = "2" | [A-Z] | "_" | [a-Z] | [WC0-\uD6] | [uD8-\uF6] | [WF8-\u2FF] | [Ww370-\u37D] | [w37F-\ul FFF]
| [\W200C-\u200D] | [Ww2070-\u218F] | [w2C00-\u2FEF] | [\u3001-\uD7FF] | [WwF900-uFDCF] | [WWFDF0-\uFFFD] |
[\u10000-\uEFFFF] ;

31 name part char = name start char | digit | \uB7 | [\u0300-\u036F] | [\u203F-\u2040] ;
32 additlonal name SymbOlS o H'H | H/H ‘ H_H ‘ nn ‘ Vl+ll | nkn ;

33 simple literal = numeric literal | string literal | Boolean literal | date time literal ;

" "

34  string literal ="', { character — (""" | vertical space) }, " ;

35 Boolean literal = "true" | "false" ;

36 numeric literal = [ "-" ], (digits, [ ".", digits ] | ".", digits ) ;

37 digit=[0-9];

38 digits = digit , {digit} ;

39 date time literal = ("date" | "time" | "duration" ), "(", string literal , ")" ;

51 comparison =

51.a expression , ( n_n | l|!=u | nen | Ne=n | nsn | "nS_n ) ) expression;

9.3 S-FEEL data types

S-FEEL supports all FEEL data types: number, string, boolean, days and time duration, years and months duration, time
and date, although with a simplified definition for some of them.

S-FEEL number has the same literal and values spaces as the XML Schema decimal datatype. Implementations are
allowed to limit precision to 34 decimal digits and to round toward the nearest neighbor with ties favoring the even
neighbor. Notice that “precision is not reflected in this value space. the number 2.0 is not distinct from the number 2.00”
[XML Schema]. Notice, also, that this value space is totally ordered. The definition of S-FEEL number is a simplification
over the definition of FEEL number.

S-FEEL supports FEEL string and FEEL Boolean: FEEL string has the same literal and values spaces as the Java String
and XML Schema string datatypes. FEEL boolean has the same literal and values spaces as the Java Boolean and XML
Schema Boolean datatypes.

S-FEEL supports the FEEL time data type. The lexical and value spaces of FEEL time are the literal and value spaces of
the XML Schema time datatype. Notice that, “since the lexical representation allows an optional time zone indicator,
time values are partially ordered because it may not be able to determine the order of two values one of which has a time
zone and the other does not. Pairs of time values with or without time zone indicators are totally ordered” [ XSD].

S-FEEL does not support FEEL date and time. However, it supports the date type, which is like FEEL date and time with
hour, minute, and second required to be absent. The lexical and value spaces of FEEL date are the literal and value spaces
of the XML Schema date datatype.

Decision Model and Notation 1.1 93


http://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/xmlschema11-2/

S-FEEL supports the FEEL days and time duration and years and months duration datatypes. FEEL days and time
duration and years and months duration have the same literal and value spaces as the XPath Data Model
dayTimeDuration and yearMonthDuration datatypes, respectively. That is, FEEL days and time duration is derived from
the XML Schema duration datatype by restricting its lexical representation to contain only the days, hours, minutes and
seconds components, and FEEL years and months duration is derived from the XML Schema duration datatype by
restricting its lexical representation to contain only the year and month components.

The FEEL data types are specified in details in clause 10.3.2.2.

9.4 S-FEEL semantics

S-FEEL contains only a limited set of basic features that are common to most expression and programming languages,
and on the semantics of which most expression and programming languages agree.

The semantics of S-FEEL expressions are defined in this section, in terms of the semantics of the XML Schema datatypes
and the XQuery 1.0 and XPath 2.0 Data Model datatypes, and in terms of the corresponding functions and operators
defined by XQuery 1.0 and XPath 2.0 Functions and Operators (prefixed by “op:” below). A complete stand-alone
specification of the semantics is to be found in clause 10.3.2, as part of the definition of FEEL. Within the scope of S-
FEEL, the two definitions are equivalent and equally normative.

Arithmetic addition and subtraction (grammar rule 4a) have the same semantics as:
e op:numeric-add and op:numeric-subtract, when its two operands are numbers;

e op:add-yearMonthDurations and op:subtract-yearMonthDurations, when the two operands are years and months
durations;

e op:add-dayTimeDuration and subtract:dayTimeDurations, when the two operands are days and time durations;

e op:add-yearMonthDuration-to-date and op:subtract-yearMonthDuration-from-date, when the first operand is a
years and months duration and the second operand is a date;

e op:add-dayTimeDuration-to-date and op:subtract-dayTimeDuration-from-date, when the first operand is a days
and time duration and the second operand is a date;

e op:add-dayTimeDuration-to-time and op:subtract-dayTimeDuration-from-time, when the first operand is a days
and time duration and the second operand is a time.

In addition, arithmetic subtraction has the semantics of op:subtract-dates or op:subtract-times, when the two operands are
dates or times, respectively.

Arithmetic addition and subtraction are not defined in other cases.

Arithmetic multiplication and division (grammar rule 4b) have the same semantics as defined for op:numeric-multiply
and op:numeric-divide, respectively, when the two operands are numbers. They are not defined otherwise. Arithmetic
exponentiation (grammar rule 4c) is defined as the result of raising the first operand to the power of the second operand,
when the two operands are numbers. It is not defined in other cases.

Arithmetic negation (grammar rule 4d) is defined only when its operand is a number: in that case, its semantics is
according to the specification of op:numeric-unary-minus.

Comparison operators (grammar rule 7.a) between numbers are defined according to the specification of op:numeric-
equal, op-numeric-less-than and op:numeric-greater-than, comparisons between dates are defined according to the
specification of op:date-equal, op:date-less-than and op:date-greater-than; comparisons between times are defined
according to the specification of op:time-equal, op:time-less-than and op:time-greater-than; comparisons between years
and months durations are defined according to the specification of op:duration-equal, op:yearMonthDuration-less-than
and op:year-MonthDuration-greater-than; comparisons between days and time durations are defined according to the
specification of op:duration-equal, op:dayTimeDuration-less-than and op:dayTimeDuration-greater-than.

String and Booleans can only be compared for equality: the semantics of strings and Booleans equality is as defined in the
specification of fn:codepoint-equal and op:Boolean-equal, respectively.

Decision Model and Notation 1.1 94


http://www.w3.org/TR/xpath-datamodel/

Comparison operators are defined only when the two operands have the same type, except for years and months duration
and days and time duration, which can be compared for equality. Notice, however, that “with the exception of the zero-
length duration, no instance of xs:dayTimeDuration can ever be equal to an instance of xs:yearMonthDuration.” [ XFO].

Given an expression o to be tested and two endpoint el and e2:
e isin the interval (el..e2), also notated Jel..e2[, if and only if o >el and 0 <el
e s in the interval (el..e2], also notated Jel..e2], if and only if 0 > el and 0 < e2
e isin the interval [el..e2] if and only if 0 > el and 0 <e2
e isin the interval [el..e2), also notated [el..e2[, if and only if 0 > el and 0 <¢e2

An expression to be tested satisfies an instance of simple unary tests (grammar rule 14) if and only if, either the
expression is a list and the expression satisfies at least one simple unitary test in the list, or the simple unitary tests is

73T

9.5 Use of S-FEEL expressions

This section summarizes which kinds of S-FEEL expressions are allowed in which role, when the expression language is
S-FEEL.

9.5.1 Item definitions

The expression that defines an allowed value SHALL be an instance of simple unary tests (grammar rule 14), where only
the values in the defined or referenced type that satisfy the test are allowed values.

9.5.2 Invocations

In the bindings of an invocation, the binding formula SHALL be a simple expression (grammar rule 5).

9.5.3 Decision tables

Each input expression SHALL be a simple expression (grammar rule 5).

Each list of input values SHALL be an instance of simple unary tests (grammar rule 14).
Each list of output values SHALL be an instance of simple unary tests (grammar rule 14).
Each input entry SHALL be an instance of simple unary tests (grammar rule 14).

Each output entry SHALL be a simple expression (grammar rule 5).

Decision Model and Notation 1.1 95



10 Expression Language (FEEL)

10.1 Introduction

In DMN, all decision logic is represented as boxed expressions. Clause 7.2 introduced the concept of the boxed
expression and defined two simple kinds: boxed literal expressions and boxed invocations. Clause 8 defined decision
tables, a very important kind of boxed expression. This section completes the graphical notation for decision logic, by
defining other kinds of boxed expressions.

The expressions 'in the boxes' are FEEL expressions. FEEL stands for Friendly Enough Expression Language and it has
the following features:

e  Side-effect free

e Simple data model with numbers, dates, strings, lists, and contexts
e Simple syntax designed for a wide audience

e  Three-valued logic (true, false, null) based on SQL and PMML

This section also completely specifies the syntax and semantics of FEEL. The syntax is specified as a grammar (10.3.1).
The subset of the syntax intended to be rendered graphically as a boxed expression is also specified as a meta-model
(Error: Reference source not found).

FEEL has two roles in DMN:
1. As a textual notation in the boxes of boxed expressions such as decision tables,

2. As a slightly larger language to represent the logic of expressions and DRGs for the main purpose of composing
the semantics in a simple and uniform way

10.2 Notation

10.2.1 Boxed Expressions
This section builds on the generic notation for decision logic and boxed expressions defined in clause 7.2.

We define a graphical notation for decision logic called boxed expressions. This notation serves to decompose the
decision logic model into small pieces that can be associated with DRG artifacts. The DRG plus the boxed expressions
form a complete, mostly graphical language that completely specifies Decision Models.

A boxed expression is either

® a decision table,

® aboxed FEEL expression,
® aboxed invocation,

® a boxed context,

® a boxed list,

® arelation, or

® aboxed function.
Boxed expressions are defined recursively, i.e. boxed expressions can contain other boxed expressions. The top-level
boxed expression corresponds to the decision logic of a single DRG artifact. This boxed expression SHALL have a name

box that contains the name of the DRG artifact. The name box may be attached in a single box on top, as shown in Figure
10.1:

Decision Model and Notation 1.1 96



Name

top-level boxed expression

Figure 10.1: Boxed expression

Alternatively, the name box and expression box can be separated by white space and connected on the left side with a
line, as shown in Figure 10.2:

Name

top-level boxed expression

Figure 10.2: Boxed expression with separated name and expression boxes

Graphical tools are expected to support appropriate graphical links, for example, clicking on a decision shape opens a
decision table.

10.2.1.1 Decision Tables

The executable decision tables defined here use the same notation as the decision tables defined in Clause 8. Their
execution semantics is defined in clause 10.3.2.8.

10.2.1.2 Boxed FEEL expression

A boxed FEEL expression is any FEEL expression e, as defined by the FEEL grammar (clause 10.3.1), in a table cell, as
shown in Figure 10.3:

Figure 10.3: Boxed FEEL expression

The meaning of a boxed expression containing e is FEEL(e, s), where s is the scope. The scope includes the context
derived from the containing DRD as described in 10.4, and any boxed contexts containing e.

It is usually good practice to make e relatively simple, and compose small boxed expressions into larger boxed
expressions.
10.2.1.3 Boxed Invocation

The syntax for boxed invocation is described in clause 7.2.3. This syntax may be used to invoke any function (e.g.
business knowledge model, FEEL built-in function, boxed function definition).

The box labeled 'invoked business knowledge model' can be any boxed expression whose value is a function, as shown in
Figure 10.4:

Decision Model and Notation 1.1 97



Name

function-valued expression
parameter 1 binding expression 1
parameter 2 binding expression 2
parameter n binding expression n

Figure 10.4: Boxed invocation

The boxed syntax maps to the textual syntax defined by grammar rules 40, 41, 42, 43. Boxed invocation uses named
parameters. Positional invocation can be achieved using a boxed expression containing a textual positional invocation.

The boxed syntax requires at least one parameter. A parameterless function must be invoked using the textual syntax, e.g.
as shown in Figure 10.5.

function-valued expression()

Figure 10.5: Parameterless function

Formally, the meaning of a boxed invocation is given by the semantics of the equivalent textual invocation, e.g.,
function-valued expression(parameter;: binding expression,;, parameter,: binding expression,, ...).

10.2.1.4 Boxed Context

A boxed context is a collection of n (name, value) pairs with an optional result value. Each pair is called a context entry.
Context entries may be separated by whitespace and connected with a line on the left (top). The intent is that all the
entries of a context should be easily identified by looking down the left edge of a vertical context or across the top edge of
a horizontal context. Cells SHALL be arranged in one of the following ways (see Figure 10.6, Figure 10.7):

Name 1 Value 1

Name 2 Value 2

Name n Value n
Result

Figure 10.6: Vertical context

Decision Model and Notation 1.1 98



Name 1 Name 2 Name n

Result
Value 1 Value 2 Value n

Figure 10.7: Horizontal context

The context entries in a context are often used to decompose a complex expression into simpler expressions, each with a
name. These context entries may be thought of as intermediate results. For example, contexts without a final Result box
are useful for representing case data (see Figure 10.8).

Applicant Data

Age 51

MaritalStatus "M"

EmploymentStatus "EMPLOYED"

ExistingCustomer false

Monthly Income 10000.00

Repayments | 2500.00

Expenses 3000.00

Figure 10.8: Use of context entries

Contexts with a final result box are useful for representing calculations (see Figure 10.9).

Decision Model and Notation 1.1 99



Eligibility

Age Applicant. Age

Monthly Income Applicant. Monthly. Income
Pre-Bureau Risk Category Affordability. Pre-Bureau Risk Category
Installment Affordable Affordability. Installment Affordable

if Pre-Bureau Risk Category = "DECLINE" or
Instaliment Affordable = false or
Age <18 or
Monthly Income < 100

then "INELIGIBLE"

else "ELIGIBLE"

Figure 10.9: Use of final result box

When decision tables are (non-result) context entries, the output cell can be used to name the entry, thus saving space.
Any format decision table can be used in a vertical context. A jagged right edge is allowed. Whitespace between context
entries may be helpful. See Figure 10.10.

Name 1 Value 1
Name 2
Name n Value n
Result

Figure 10.10: Vertical context with decision table entry

Color is suggested.
The names SHALL be legal FEEL names. The values and optional result are boxed expressions.

Boxed contexts may have a decision table as the result, and use the named context entries to compute the inputs, and give
them names. For example (see Figure 10.11):

Decision Model and Notation 1.1 100



Post-Bureau Risk Category

Existing Customer

Applicant. ExistingCustomer

Credit Score

Report. CreditScore

Application Risk Score

Affordability Model(Applicant, Product).
Application Risk Score

u Existing Application Risk Credit Score Post-Bureau Risk Category
Customer Score

1 <590 “HIGH”

2 <=120 [590..610] “MEDIUM”

3 >610 “Low”
true

4 <600 “HIGH”

5 >120 [600..625] “MEDIUM”

6 >625 “Low”

7 <580 “HIGH”

8 <=100 [580..600] “MEDIUM”

9 >600 “Low”
false

10 <590 “HIGH”

11 >100 [590..615] “MEDIUM”

12 >615 “Low”

Figure 10.11: Use of boxed expressions with a decision table

Formally, the meaning of a boxed context is { “Name 1”: Value 1, “Name 2”: Value 2, ..., “Name n”: Value n } if no
Result is specified. Otherwise, the meaning is { “Name 1”: Value 1, “Name 2”: Value 2, ..., “Name n”: Value n,
“result”: Result }.result. Recall that the bold face indicates elements in the FEEL Semantic Domain. The scope includes

the context derived from the containing DRG as described in 10.4.

Decision Model and Notation 1.1




10.2.1.5 Boxed List
A boxed list is a list of # items. Cells SHALL be arranged in one of the following ways (see Figure 10.12, Figure 10.13):

Item 1

Item 2

Itemn

Figure 10.12: Vertical list

Item 1, Item 2, Item n

Figure 10.13: Horizontal list

Line styles are normative. The items are boxed expressions. Formally, the meaning of a boxed list is just the meaning of
the list, i.e. [ Item 1, Item 2, ..., Item n |. The scope includes the context derived from the containing DRG as described
in 10.4.

10.2.1.6 Relation

A vertical list of homogeneous horizontal contexts (with no result cells) can be displayed with the names appearing just
once at the top of the list, like a relational table, as shown in Figure 10.14:

Name 1 Name 2 Name n
Value 1a Value 2a Value na
Value 1b Value 2b Value nb
Value 1m Value 2m Value nm

Figure 10.14: Relation

10.2.1.7 Boxed Function
A Boxed Function Definition is the notation for parameterized boxed expressions.

The boxed expression associated with a Business Knowledge Model SHALL be a boxed function definition or a decision
table whose input expressions are assumed to be the parameter names.

A boxed function has 3 cells:

1. Kind, containing the initial letter of one of the following:

e FEEL
e PMML
e Java

The Kind box can be omitted for Feel functions, including decision tables.

Decision Model and Notation 1.1 102



2. Parameters: 0 or more comma-separated names, in parentheses
3. Body: a boxed expression

The 3 cells SHALL be arranged as shown in Figure 10.15:

K (Parameterl, Parameter2, ...)

Body

Figure 10.15: Boxed function definition

For FEEL functions, denoted by Kind FEEL or by omission of Kind, the Body SHALL be a FEEL expression that
references the parameters. For externally defined functions denoted by Kind Java, the Body SHALL be a context as
described in 10.3.2.11.2 and the form of the mapping information SHALL be the java form. For externally defined
functions denoted by Kind PMML, the Body SHALL be a context as described in 10.3.2.11.2 and the form of the mapping
information SHALL be the pmm! form.

Formally, the meaning of a boxed function is just the meaning of the function, i.e., FEEL(function(Parameterl,
Parameter?2, ...) Body) if the Kind is FEEL, and FEEL(function(Parameterl, Parameter?2, ...) external Body) otherwise.
The scope includes the context derived from the containing DRG as described in 10.4.

10.2.2 FEEL

A subset of FEEL, defined in the next section, serves as the notation "in the boxes" of boxed expressions. A FEEL object
is a number, a string, a date, a time, a duration, a function, a context, or a list of FEEL objects (including nested lists).

Note: A JSON object is a number, a string, a context (JSON calls them maps) or a list of JSON objects. So FEEL is an
extension of JSON in this regard. In addition, FEEL provides friendlier syntax for literal values, and does not require
context keys to be quoted.

Here we give a "feel" for the language by starting with some simple examples.

10.2.2.1 Comparison of ranges

Ranges and lists of ranges appear in decision table input entry, input value, and output value cells. In the examples in
Table 34, this portion of the syntax is shown underlined. Strings, dates, times, and durations also may be compared, using
typographical literals defined in section 7.2.2.1.

Table 34: FEEL range comparisons

FEEL Expression Value
5in(<=5) true
5in ((5..10]) false
5in ([5..10]) true
5in(4.5.6) true

Decision Model and Notation 1.1 103



5in(<5,>5) false

2012-12-31 in ( (2012-12-25..2013- | true
02-14))

10.2.2.2 Numbers

FEEL numbers and calculations are exemplified in Table 35.

Table 35: FEEL numbers and calculations

FEEL Expression Value
decimal(1, 2) 1.00
25+ .2 0.45
.10 *30.00 3.0000
1 +3/2%2 - 2%%*3 -4.0
173 0.3333333333333333333333333333333333
decimal(1/3, 2) 0.33
1=1.000 true
1.01/2 0.505
decimal(0.505, 2) 0.50
decimal(0.515, 2) 0.52
1.0*¥10**3 1000.0

10.3 Full FEEL Syntax and Semantics

Clause 9 introduced a subset of FEEL sufficient to support decision tables for Conformance Level 2 (see clause 2). The
full DMN friendly-enough expression language (FEEL) required for Conformance Level 3 is specified here. FEEL is a
simple language with inspiration drawn from Java, JavaScript, XPath, SQL, PMML, Lisp, and many others.

The syntax is defined using grammar rules that show how complex expressions are composed of simpler expressions.
Likewise, the semantic rules show how the meaning of a complex expression is composed from the meaning of
constituent simper expressions.

DMN completely defines the meaning of FEEL expressions that do not invoke externally-defined functions. There are no
implementation-defined semantics. FEEL expressions (that do n