Detailed instructions for incorporating the resolution to SYSMLR-155

Preamble: The resolution instruction voted in ballot 6 were pretty uncomplete and would not have allowed “as is” to get a consistent specification. In this new version of the resolution instructions, we adjusted the modifications so that they reflect the spirit of the consensus reached after months of discussion.

§16.1 Overview
1. Replace the last sentence in this section (Some potential Requirement subclasses are defined in Annex E) with the following sentences:
“Some potential Requirement subclasses are defined in Annex E.3.
2. After the above sentence change, add the following
“Some users may want a more explicit way to model numerical values and equations as expressed in requirements. Annex E.8 provides examples of non-normative extensions to SysML that meet this need.”

§16.3.2 Stereotypes
1. Replace Figure 16.1 with the following figure (separate SVG file provided)

[image: Lightningbolt:Users:skygazer:Documents:3. Career:SysML:1. SysML Spec:5-RTF:SysML 1.5 RTF:Property Based Requirements:Proposal:20160412 Proposal:Figure 16.1:Figure 16.1.pdf]

2. Create new paragraph to before the existing 16.3.2.1, as follows:
“16.3.2.1	AbstractRequirement
Description
An AbstractRequirement establishes the attributes and relationships essential to any potential kind of requirement. Any intended requirement kind should subclass AbstractRequirement. The only normative stereotype based on AbstractRequirement is the Requirement stereotype, described in section 16.3.2.5. Examples of additional non-normative stereotypes based on AbstractRequirement are included in Annex E.8.

Attributes
· text: String 
The textual representation or a reference to the textual representation of the requirement.  
· id: String 
The unique id of the requirement.  
· /satisfiedBy: NamedElement [*] 
Derived from all elements that are the client of a «satisfy» relationship for which this requirement is a supplier.  
· /verifiedBy: NamedElement [*] 
Derived from all elements that are the client of a «verify» relationship for which this requirement is a supplier.  
· /tracedTo: NamedElement [*] 
Derived from all elements that are the supplier of a «trace» relationship for which this requirement is a client.  
· /derived: Requirement AbstractRequirement [*] 
Derived from all requirements that are the client of a «deriveReqt» relationship for which this requirement is a supplier.  
· /derivedFrom: Requirement AbstractRequirement [*] 
Derived from all requirements that are the supplier of a «deriveReqt» relationship for which this requirement is a client.  
· /refinedBy: NamedElement [*] 
Derived from all elements that are the client of a «refine» relationship for which this requirement is a supplier.  
· /master: Requirement AbstractRequirement [0..1] 
This is a derived property that lists the master requirement for this slave requirement. The master attribute is derived from the supplier of the Copy dependency that has this requirement as the slave.  

Constraints
[none]

Operations
[1] AbstractRequirementRequirement::getSatisfiedBy : Set(NamedElement)
getSatisfiedBy = Satisfy.allInstances()->select(base_classAbstraction.supplier=self).
base_Abstraction.client
[2] AbstractRequirementRequirement::getVerifiedBy : Set(NamedElement)
getVerifiedBy = Verify.allInstances()->select(base_Abstraction.supplier=self).
base_classclassAbstraction.client
 [3] AbstractRequirementRequirement::getTracedTo() : Set(NamedElement)
getTracedTo =Trace.allInstances()->select(base_Abstraction.client=self).
base_classclassAbstraction.supplier
[4] AbstractRequirementRequirement::getDerived() : Set(AbstractRequirementRequirementRequirement)
getDerived = DeriveReqt.allInstances()->select(base_Abstraction.supplier=self).
base_classclassAbstraction.client
[5] AbstractRequirementRequirement::getDerivedFrom() : Set(AbstractRequirementRequirementRequirement)
getDerivedFrom = DeriveReqt.allInstances()->select(base_Abstraction.client=self).
base_classclassAbstraction.supplier
[6] AbstractRequirementRequirement::getRefinedBy: Set(NamedElement)
getRefinedBy = Refine.allInstances()->select(base_Abstraction.supplier=self).
base_classclassAbstraction.client
[bookmark: _GoBack][7] AbstractRequirementRequirement::getMaster() : Set(AbstractRequirementRequirement Requirement)
getMaster = Copy.allInstances()->select(base_Abstraction.client=self).base_classclassAbstraction.supplier “

3. [Copy] Renumber previous §16.3.2.1 to be 16.3.2.2. Replace Constraint [1] with the following:
“[1]	A Copy dependency may only be created between two classes NnamedElements that have a subtype of the AabstractRequirement stereotype applied.”

4. [DeriveReqt] Renumber previous §16.3.2.2 to be 16.3.2.3. Remove the Constraints section, and replace it as follows:
“Constraints
[1] The supplier must be an element stereotyped by «requirement» or one of «requirement» subtypes a subtype of AbstractRequirement.
[2] The client must be an element stereotyped by «requirement» or one of «requirement» subtypes a subtype of AbstractRequirement.”

5. [Refine] Renumber previous §16.3.2.3 to be 16.3.2.4. Remove the Operations section, and replace it with the following:
“Operations
[1] The query get Refines() gives all the requirements that are suppliers (“to” end of the concret e syntax) of a «Refine» relationships whose client is the element in parameter. This is a static query.
Refine::getRefines(ref:NamedElement) : Set(RequirementAbstractRequirement) {query, static} getRefines= Refine.allInstances()->select(base_Abstraction.client=ref).base_Abstraction.supplier ”ref.clientDependency->select(d | not d.extension_Refine.
 oclIsUndefined()).supplier ”

6. [Requirement] Renumber previous §16.3.2.4 to be 16.3.2.5. Make changes as follows:
- Change first sentence in second paragraph from “A requirement is a stereotype of Class. “ to “A requirement is a stereotype of both Class and specializing the Abstract Requirement stereotype. “
- Delete entire Attributes section
- Retain Constraints section
- Delete entire Operations section

7. [Test Case] Renumber previous §16.3.2.5 to be 16.3.2.6.

8. [Satisfy] Renumber previous §16.3.2.6 to be 16.3.2.7. Remove the Operations section, and replace with the following:
“Operations
[1] The query get Satisfies() gives all the requirements that are suppliers (“to” end of the concrete syntax) of a «Satisfy» relationships whose client is the element in parameter. This is a static query. 
Satisfy::getSatisfies(ref : NamedElement): Set(AbstractRequirementRequirement) {query, static} getSatisfies= Satisfy.allInstances()->select(base_Abstraction.client=ref).base_Abstraction.supplierref.clientDependency->select(d | not d.extension_Satisfy.
 oclIsUndefined()).supplier ”

9. [Trace] Renumber previous §16.3.2.7 to be 16.3.2.8. Remove the Operations section, and replace it with the following:
“Operations
[1] The query getTracedFrom() gives all the requirements that are clients (“from” end of the concrete syntax) of a «Trace» relationship whose supplier is the element in parameter. This is a static query. 
Trace::getTracedFrom(ref : NamedElement) : Set(AbstractRequirementRequirement) {query, static} getTracedFrom=AbstractRequirementRequirement.AllInstances()->select(traceTo->includes(ref)) “

10. [Verify] Renumber previous §16.3.2.8 to be 16.3.2.9. Remove the Operations section, and replace it with the following:
“Operations
[1] The query getVerifies() gives all the requirements that are suppliers (“to” end of the concrete syntax) of a «Verify» relationships whose client is the element in parameter. This is a static query.
Verify::getVerifies(ref:NamedElement) : Set(AbstractRequirementRequirement) {query, static} getVerifies= Verify.allInstances()->select(base_Abstraction.client=ref).base_Abstraction.supplier ref.clientDependency->select(d | not d.extension_Verify.
 oclIsUndefined()).supplier “

11. Add the following sentence at the beginning of the current text in §16.4 Usage Examples:
“The examples in this clause show the use of the normative Requirement stereotype. Examples showing the definition and use of non-normative requirement stereotypes based on AbstractRequiriement are shown in Annex E.8.”

12. Add new Annex E.8 per separate word document.

image1.emf

«Metaclass»
UML4SysML: :NamedE lement

«Metaclass»
UML4SysML: :Operation

«Metaclass»
UML4SysML: :B ehavior

«Metaclass»
UML4SysML: :C las s

«stereotype»
UML4SysML: :R efine

«stereotype»
UML4SysML: :Trace

attributes
+Text : String [1]
+Id : String [1]{id}
+/Derived : AbstractRequirement [*]
+/DerivedFrom : AbstractRequirement [*]
+/SatisfiedBy : NamedElement [*]
+/RefinedBy : NamedElement [*]
+/TracedTo : NamedElement [*]
+/VerifiedBy : NamedElement [*]
+/Master : AbstractRequirement

«stereotype»
Abs tractR equirement

«stereotype»
DirectedR elations hipP ropertyPath

«stereotype»
DirectedR elations hipP ropertyPath

«stereotype»
Trace

«stereotype»
Tes tC as e

«stereotype»
R efine

«stereotype»
R equirement

«stereotype»
DeriveR eqt

«stereotype»
Verify

«stereotype»
S atis fy

«stereotype»
C opy

«Metaclass»

UML4SysML::NamedElement

«Metaclass»

UML4SysML::Operation

«Metaclass»

UML4SysML::Behavior

«Metaclass»

UML4SysML::Class

«stereotype»

UML4SysML::Refine

«stereotype»

UML4SysML::Trace

attr

i

butes

+Text : String [1]

+Id : String [1]{id}

+/Derived : AbstractRequirement [*]

+/DerivedFrom : AbstractRequirement [*]

+/SatisfiedBy : NamedElement [*]

+/RefinedBy : NamedElement [*]

+/TracedTo : NamedElement [*]

+/VerifiedBy : NamedElement [*]

+/Master : AbstractRequirement

«stereotype»

AbstractRequirement

«stereotype»

DirectedRelationshipPropertyPath

«stereotype»

DirectedRelationshipPropertyPath

«stereotype»

Trace

«stereotype»

TestCase

«stereotype»

Refine

«stereotype»

Requirement

«stereotype»

DeriveReqt

«stereotype»

Verify

«stereotype»

Satisfy

«stereotype»

Copy

