Building Non-Normative Extensions for Property-Based Requirements
Overview

Annex E.3 addresses extending requirements that are fundamentally textual in nature. They may be extended with various enumerations (for example RiskKind or VerifyMethodKind), and they may have different modeling constraints applied to the requirements relationships, but the requirements are only expressed as text strings.

Expressing requirements as text strings alone fundamentally limits their ability to be evaluated and verified. This Annex addresses a more formal expression of requirements generally referred to as property based requirements (PBR); one that includes quantitative specification of numerical parameters, relationships, equations and/or constraints.

Current users of text-based requirements have frequently expressed a basic need to represent numerical requirements more precisely, both to reduce ambiguity and facilitate verification by analysis and other methods. This basic need can be decomposed into three primary needs: 1) Requirements must have numerical properties (properties capable of representing numerical values), 2) these numerical properties must be typeable (preferably by ValueType) to account for quantity kind and units, and 3) these numerical properties must be bindable (preferably using BindingConnector) to other model elements (e.g. ConstraintParameters) so they can be evaluated using analysis tools. For the purpose of this discussion, a requirement that meets these three conditions is said to be a property-based requirement.

This kind of property-based requirement is intended to be used with the overall system model to assist in specifying and architecting systems. More generally, the system model may be used as a model-based specification, such as when block instances with specific property values represent the requirement. In this latter case, the model-based specification can further refine the property-based requirement.

Users of property-based requirements may desire a more elaborate capability than the primary need described above. For example, it may be desirable for the requirement to contain a constraint or mathematical expression that formally states an acceptance condition, threshold, or goal. This may alternatively need to be expressed as a set of valued pairs, elaborating both the conditions and the acceptance thresholds for each condition, or by an arbitrary graphical relationship. Some users may want the property-based requirement to formally own a behavior representing the functionality of the requirement, or the behavior by which it is satisfied or verified.

The need for this kind of property-based requirement is illustrated in the simple example of specifying a vehicle’s required stopping distance for various initial speeds and road conditions. The requirement can be expressed in a table as follows:

The Vehicle stopping distance shall not exceed the values in Table E.8‑1 as a function of initial speed and pavement condition.
	Initial Speed (mph)
	Pavement Condition (wet/dry)
	Req'd Stopping Distance-Dry (feet)
	
	Initial Speed (mph)
	Pavement Condition (wet/dry)
	Req'd Stopping Distance-Wet (feet)

	0
	dry
	0
	
	0
	wet
	0

	10
	dry
	4
	
	10
	wet
	6

	20
	dry
	17
	
	20
	wet
	22

	30
	dry
	38
	
	30
	wet
	50

	40
	dry
	67
	
	40
	wet
	89

	50
	dry
	104
	
	50
	wet
	139

	60
	dry
	150
	
	60
	wet
	201

	70
	dry
	205
	
	70
	wet
	273

	80
	dry
	267
	
	80
	wet
	357

	90
	dry
	338
	
	90
	wet
	451

	100
	dry
	418
	
	100
	wet
	557

[bookmark: _Ref319660484]Table E.8‑1 Example of Requirement in Tabular Form

An alternative expression in plot format can be:
The Vehicle stopping distance shall not exceed the values in Figure E.8‑1 as a function of initial speed and pavement condition.

[bookmark: _Ref319661017]Figure E.8.1 Example of Requirement in Graphical Form

The input/output parameter relationship or constraint can be specified in equation form, such as in the following example:

Stopping distance <= (1/(2*32.174*alpha)*(5280*Initial Speed/3600)^2)

Start Speed = 0 …100

	
	alpha

	dry
	0.8

	wet
	0.6

More generally, the input and output parameter values may be complex functions of other parameters, and may have probability distributions associated with them.

This annex addresses mechanisms and approaches for building SysML profiles to enable property-based requirements. While examples of property-based requirement profiles are provided in this annex, these are not to be considered to be normative or even authoritative. Instead, they are intended to be illustrative of the kind of extensions that a sophisticated usersome users may find desirable. Ultimate responsibility for the compatibility of any property-based requirement profile with a particular requirements management process or toolset rests fully with the user.	Comment by Rick Steiner: Sandy JIRA comment 20160410 00:02 (GMT-7).	Comment by Rick Steiner: Lenny eMail 20160502 bullet 6: “I would suggest rewording the original statement in a more neutral way: "they are intended to be illustrative of the kind of extensions that some users may find desirable.””
Considerations for building a PBR profile

The «abstractRequirement» model element was incorporated in section 16.3.2 of the SysML specification explicitly to provide a means for users to build their own profile extension to support requirements development. This non-normative annex does not impose a particular extension in this regard, but offers up two different examples that may prove illustrative of the capability available in the language.

Adding properties to requirements should be carefully considered before any profile is developed or implemented. Considerations should include how requirements and their properties are sourced or imported from dedicated requirements tools, and how they will be incorporated into specification views or artifacts generated from the SysML model. Additionally, users should consider how durable the requirements developed with the new profile are intended to be, i.e. are they intended to exist beyond the trade study phase of the project, or will they eventually revert to a kind of «extendedRequirement» as described in annex E.3 and no longer need separate properties.	Comment by Rick Steiner: Lenny eMail 20160502 first bullet: “My concern is this: Offering a user a set of options and then cautioning them to carefully consider the implications and meaning of their choice isn't helpful. The SysML spec. should instead define the implications and meaning of each choice so that the user can make an informed decision. I understand that Annex E is intended to be non-normative, but that doesn't mean that it should stop short of defining the meaning of each choice. Users who have a pre-existing frame of reference upon which to base a judgment may still decide to redefine that meaning in project-specific ways, but at least beginning users will have some scaffolding to structure their thinking in order to make an informed decision.”

The «abstractRequirement» model element is intended to be used as a “mix-in” in conjunction with other classifiers, providing requirement ID and text properties and standard requirement relationships. Note that in Figure 16.1 the normative «requirement» model element uses «abstractRequirement» with the base class of «class».

When selecting a base classifier for a PBR stereotype, users should consider how property values and constraints should be handled. If properties of requirements are to be handled solely as evaluable expressions, then basing PBR on «constraint» may be preferred. If properties of requirements are to be handled as value properties, then basing PBR on «block» makes sense. If properties of requirements are to be handled as parameters in constraint expressions, then basing PBR on «constraintBlock» may be most appropriate.

If the base classifier chosen can be used in generalization/specialization relationships, the user is cautioned to consider the implications and meaning of these relationships with respect to requirements. For example, is a PBR that has been specialized still a requirement, or has it in effect become a requirement archetype that should no longer be directly applied to a system design? The user is also cautioned to consider the meaning of properties that have been typed by PBRs.
A requirement property should represent the use of a requirement in a context, but always point back to and faithfully represent the source PBR.

PBR capability may be deployed in a progressive or incremental manner. Here are two sequential stages of deployment within a project or organization:
1. Use of a PBR stereotype, which includes a typed value, without specific constraints or bindings for evaluation. This provides additional specificity and uniformity in required values and their types.
2. Adding to the above some form of numerical evaluation of requirement satisfaction. This could be evaluation of a constraint expression of the PBR.

It should be noted that the use of classifiers as PBR base classes must include defining the meaning and constraints associated with requirements as types, which is not an issue in normative SysML. A PBR that generalizes another PBR could be considered to be a requirement archetype, and the user is cautioned to carefully consider the implications of «satisfy» relationships to such a requirement and potential implications on its subtype. Also, properties typed by a PBR may be necessary for evaluation purposes; the meaning of these properties must be clearly understood, and it is suggested that such “PBR properties” not be considered to be requirements in their own right.	Comment by Rick Steiner: Lenny eMail 20160503 second bullet: “In order to vote for a proposal, I need to be able to defend or explain that proposal when I'm working with clients who are trying to learn MBSE. In order for me to do that, the proposal needs to more clearly define the semantics of a property typed by a requirement (i.e., what it means to have an (M0) instance of a requirement).”

An Example PBR Profile Based on ConstraintBlock

Using «constraintBlock» as a base class for PBR may prove compact, simple, and intuitive. The following example first establishes a PBR user profile, and then employs that profile for a simple user example.

Profile/Stereotypes of PBR Based on ConstraintBlock
Figure E.8‑2 shows use of both «abstractRequirement» and «constraintBlock» to define a new PBR stereotype, named RequirementConstraintBlock in this example for clarity.
[image: Lightningbolt:Users:skygazer:Documents:3. Career:SysML:1. SysML Spec:5-RTF:SysML 1.5 RTF:Property Based Requirements:Proposal:20160331 Proposal:Annex E.8 pdfs:Figure E.8.2.pdf]
[bookmark: _Ref319661168]Figure E.8.2 Example of a PBR Profile Based on Constraint Block
Basing PBR on ConstraintBlock provides flexibility in expressing the name of required numerical values as ConstraintParameters, which can be typed by ValueTypes and related to properites or parameters of other model elements using binding connectors. Textual requirement statements may be restated as constraint expressions that reference these ConstraintParameters. The value bindings can then be used to evaluate the constraint expression and determine compliance with the requirement.

The numerical required value may then be stored as a DefaultValue of the ConstraintParameter. It may alternatively be specified directly in a constraint expression, rather than a default value, e.g. {requiredactualWeight = 1450} where requiredactualWeight is defined as a constraint property parameter typed by a value type. Complex requirement criteria may be represented by a series of constraint expressions.	Comment by Rick Steiner: Sandy JIRA comment 20160410 01:12 (GMT-7) part a.	Comment by Rick Steiner: Lenny eMail 20160502 bullet 3.

It is also noted that constraint blocks can have owned behavior, and that a constraint expression can be a value expression (with opaque behavior). UML requires that constraint expressions evaluate to a Boolean, but that may not be necessary in SysML. 	Comment by Rick Steiner: Sandy JIRA comment 20160410 01:12 (GMT-7) part b.

Usage Example using PBR profile based on ConstraintBlock

The following example leverages the above PBR user profile based on ConstraintBlock to specify and evaluate the weight of a vehicle.

The requirement is captured via a PBR (RequirementConstraintBlock), which includes a constraint expression that reflects the textual requirements statement in terms of two defined parameters, actualWeight actualMass and requiredWeightrequiredMass. Both of these parameters are typed by the kilogram value type from the SI value types library. The required value for weight mass is expressed as a default value of the requiredWeight requiredMass parameter. Note that the required value may have alternatively been expressed as a second constraint expression, e.g. {requiredWeight requiredMass = 1450}. The vehicle itself is represented in the model by a block with a value property for mass, also typed by the kilogram SI value type.	Comment by Rick Steiner: Lenny eMail 20160502 bullet 4:  There is an error in Figure E.8.3: It shows two constraint parameters--"actualWeight" and "requiredWeight"--that are of type mass and a value property, "weight," of type mass. This is an error for two reasons:
o From a physics standpoint, weight and mass are distinct properties--each measured in different units. It's true that they are mathematically related by Newton's second law, but they are in fact distinct properties, and thus they should each be modeled as value properties. It's not accurate to say that weight is of type mass.
o Figure E.8.3 is incorrect also because it doesn't match the text of the following sentence which appears two paragraphs before the figure: "The vehicle itself is represented in the model by a block with a value property for mass, also typed by the kilogram SI value type."
I would recommend reworking the example to express the requirement either in terms of weight or mass--not intermingling the two in the same requirement.

As shown in Figure E.8‑3, the context for evaluating if the requirement has been met is established using a Requirement Context block. This method of context setting is a best practice that is not essential to this example. Both the Vehicle and the Vehicle Weight Mass Requirement are used in this Requirement Context.

[image: Lightningbolt:Users:skygazer:Documents:3. Career:SysML:1. SysML Spec:5-RTF:SysML 1.5 RTF:Property Based Requirements:Proposal:20160512 Proposal:Annex E.8 pdfs:Figure E.8.3.pdf][image: Lightningbolt:Users:skygazer:Documents:3. Career:SysML:1. SysML Spec:5-RTF:SysML 1.5 RTF:Property Based Requirements:Proposal:20160331 Proposal:Annex E.8 pdfs:Figure E.8.3.pdf]	Comment by Rick Steiner: Original was missing constraint compartment.
[bookmark: _Ref319661574]Figure E.8.3 Example of Requirement Evaluation Context Using PBR Based on Constraint Block
Figure E.8‑4 shows a parametric diagram of the Requirement Context block, useful in for establishing the method of evaluating complianceevaluating compliance of the VehiclevehicleMass weight value with the Vehicle Weight Mass Requirement. As with any parametric model, it does not actually perform the evaluation/analysis, but it does specify the key relationships so that an evaluation tool may determine if the weight requirement has been met.

[image: Lightningbolt:Users:skygazer:Documents:3. Career:SysML:1. SysML Spec:5-RTF:SysML 1.5 RTF:Property Based Requirements:Proposal:20160512 Proposal:Annex E.8 figures:Updated figs:Figure E.8.4.pdf][image: Lightningbolt:Users:skygazer:Documents:3. Career:SysML:1. SysML Spec:5-RTF:SysML 1.5 RTF:Property Based Requirements:Proposal:20160331 Proposal:Annex E.8 pdfs:Figure E.8.4.pdf]	Comment by Rick Steiner: Lenny eMail 20160502 bullet 5: “Figure E.8.4 has some strange Unicode characters in the figure. This is minor, but errors like this make it difficult for me to vote something through.” Rick – I see no text irregularities in .doc, .pdf, or .svg files.
[bookmark: _Ref319661691]Figure E.8.4 Example of Parametric Diagram Using PBR Based on Constraint Block

An Example PBR Profile Based on Constraint
Constraints are arguably the most straightforward way for representing system requirements. Their specification may be provided by opaque constraint expressions, which can be expressed in formal (and computable) languages like OCL. This allows the constraint statement to be applied directly to a specific design, without necessarily applying a formal evaluation context.

Profile/Stereotypes of PBR based on Constraint
Figure E.8.5 shows use of both «abstractRequirement» and «constraint» to define a new PBR stereotype, named CbRequirement in this example.	Comment by Rick Steiner: Sandy comment in JIRA 20160410 00:05 (GMT-7) – this name should be changed to “RequirementConstraint” to be consistent with the previous example.
[image: Lightningbolt:Users:skygazer:Documents:3. Career:SysML:1. SysML Spec:5-RTF:SysML 1.5 RTF:Property Based Requirements:Proposal:20160331 Proposal:Annex E.8 pdfs:Figure E.8.5.pdf]
[bookmark: _Ref320615646]Figure E.8.5 Example of a PBR profile based on Constraint
Example using PBR profile based on Constraint

Figure E.8.6 shows how requirements are specified on the model representing a specification. Note that, as modeled here, the requirement represented by Constraint2 applies to any instance of the Vehicle block while the one represented by Constraint1 applies to instances of Vehicle block which are “used” as defined by the “vehicle” role of the Context block, such as the design weight of the vehicle on a bridge or vehicle transporter.
[image: Lightningbolt:Users:skygazer:Documents:3. Career:SysML:1. SysML Spec:5-RTF:SysML 1.5 RTF:Property Based Requirements:Proposal:20160331 Proposal:Annex E.8 pdfs:Figure E.8.6.pdf]
[bookmark: _Ref320615967]Figure E.8.6 Example of PBR based on Constraint used in different contexts
Figure E.8.7 show a particular case where testedVehicle is an instance of the Vehicle block and AnalysisContext an instance of the Context block, as specified above. A simple evaluation of model constraints using a classical OCL evaluator would produce a report showing that Requirement/Constraint2 is met, while Requirement/Constraint1 is violated.
[image: Lightningbolt:Users:skygazer:Documents:3. Career:SysML:1. SysML Spec:5-RTF:SysML 1.5 RTF:Property Based Requirements:Proposal:20160412 Proposal:Annex E.8 pdfs:Figure E.8.7.pdf][image: Lightningbolt:Users:skygazer:Documents:3. Career:SysML:1. SysML Spec:5-RTF:SysML 1.5 RTF:Property Based Requirements:Proposal:20160331 Proposal:Annex E.8 pdfs:Figure E.8.7.pdf]
[bookmark: _Ref320616145]Figure E.8.7 Establishing an Analysis Context for evaluating requirement compliance using PBR based on Constraint.

Req'd Stopping Distance-Wet (feet)	0.0	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0	100.0	0.0	5.571556513310725	22.2862260532429	50.14400861979633	89.14490421297158	139.2889128327681	200.5760344791861	273.0062691522255	356.5796168518864	451.296077578167	557.1556513310726	Req'd Stopping Distance-Dry (feet)	0.0	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0	100.0	0.0	4.17866738498305	16.71466953993217	37.60800646484734	66.8586781597282	104.4666846245761	150.4320258593896	204.7547018641691	267.4347126389146	338.4720581836266	417.8667384983036	image3.emf
req [Package] Vehicle Example [conlext])

«block»
Requirement Context

«block»
V01 Vehicle

r1.01

values
weight : mass]kilogram]

«RequirementConstraintBlock»
Vehicle Weight Requirement

ld="1"
Text = "The vehicle weight shall be less than
or equal to 1450 kilograms”

parameters
actualWeight : mass[kilogram]
requiredWeight : mass(kilogram] = 1450

Vehicle Example [Package] context req []

Id = "1"

Text = "The vehicle weight shall be less than

or equal to 1450 kilograms"

parameters

actualWeight : mass[kilogram]

requiredWeight : mass[kilogram] = 1450

«RequirementConstraintBlock»

Vehicle Weight Requirement

va

l

ues

weight : mass[kilogram]

«block»

Vehicle

«block»

Requirement Context

v01

r1.01

image4.emf
par [Block] Requirement Context [vehicle mass evaluationlJ

v01: Vehicle «RequirementConstraintBlock»

vehicleMass : mass [kilogram]

r1.01 : Vehicle Mass Requirement
{actualMass < requiredMass}

actualMass requiredMass
Default Value = 1450.0

vehicle mass evaluation Requirement Context [Block] par []

«RequirementConstraintBlock»

r1.01 : Vehicle Mass Requirement

{actualMass ≤ requiredMass}

actualMass

Default Value = 1450.0

requiredMass

vehicleMass : mass[kilogram]

v01 : Vehicle

image5.emf
par [Block] Requirement Context [vehicle weightlJ

V01 : Vehicle

weight : mass [kilogram]

«RequirementConstraintBlock»
r1.01:Vehicle Weight Requirement
{actualWeight < requiredWeight

actualWeight requiredWeight

Default Value = 1450.0

Requirement Contextvehicle weight [Block] par []

«RequirementConstraintBlock»

r1.01:Vehicle Weight Requirement

{actualWeight ≤ requiredWeight}

actualWeight

Default Value = 1450.0

requiredWeight

weight : mass[kilogram]

v01 : Vehicle

image6.emf
«Metaclass»

«Stereotypex :

AbstractRequirement Constraint
+id: String [1]
+ text: String [1]
+/ satisfiedBy: NamedElement [*
+/ tracedTo: NamedElement [*
+/ verifiedBy: NamedElement [* «Stereotype»
+/ derived: AbstractRequirement [* <— CbRequirement
+/ derivedFrom: AbstractRequirement [* +/ text: String [1]
+/ master: AbstractRequirement [*]

«Stereotype»

CbRequirement

 +/ text: String [1]

«Stereotype»

AbstractRequirement

 + id: String [1]

 + text: String [1]

 +/ satisfiedBy: NamedElement [*]

 +/ tracedTo: NamedElement [*]

 +/ verifiedBy: NamedElement [*]

 +/ derived: AbstractRequirement [*]

 +/ derivedFrom: AbstractRequirement [*]

 +/ master: AbstractRequirement [*]

«Metaclass»

Constraint

image7.emf
«Block»
Vehicle

+ vehicle

+ weight: Real [1]

1
A uses
<

N
N
. «context»
\4

«CbRequirement»
Constraint2

{{OCL} self.weight < 5000}

*

ntext

«Block»
Context

«context»

«CbRequirement»
Constraint1
{{OCL} self.vehicle.weight <= 3200}

«Block»

Context

«Block»

Vehicle

 + weight: Real [1]

«CbRequirement»

Constraint1

{{OCL} self.vehicle.weight <= 3200}

«CbRequirement»

Constraint2

{{OCL} self.weight < 5000}

A_uses

 + context

 + vehicle

 *

 1

«context»

«context»

image8.emf
AnalysisContext: Contex

AnalysisContext

testedVehicle: Vehicle

testedVenhicle

weight : Real = 3500.0

testedVehicle: Vehicle

weight : Real = 3500.0

AnalysisContext: Context

AnalysisContext

testedVehicle

image9.emf
AnalysisContext: Contex

AnalysisContext

testedVenhicle: Vehicle

testedVenhicle

weight : Real = 3500.0

testedVehicle: Vehicle

weight : Real = 3500.0

AnalysisContext: Context

AnalysisContext

testedVehicle

image1.emf
bdd [Profile] PBR Profile [requirementConstraintBlock schema])

«stereotypen
AbstractRequirement
atributes
+Text : String [1]
+d : String [1]
+[Derived : AbstractRequirement ['] «stereotyper
+/DerivedFrom : AbstractRequirement [*] ConstraintBlock

+/SatisfiedBy : NamedElement [*]
+/RefinedBy : NamedElement [*]
+[TracedTo : NamedElement [*]
+/VerifiedBy : NamedElement [*]
+/Master : AbstractRequirement

«stereotypen
RequirementConstraintB lock

requirementConstraintBlock schema PBR Profile [Profile] bdd []

attr

i

butes

+Text : String [1]

+Id : String [1]

+/Derived : AbstractRequirement [*]

+/DerivedFrom : AbstractRequirement [*]

+/SatisfiedBy : NamedElement [*]

+/RefinedBy : NamedElement [*]

+/TracedTo : NamedElement [*]

+/VerifiedBy : NamedElement [*]

+/Master : AbstractRequirement

«stereotype»

AbstractRequirement

«stereotype»

RequirementConstraintBlock

«stereotype»

ConstraintBlock

image2.emf
bdd [Package] Vehicle Example [context])

«block» «block»
Requirement Context V01 Vehicle

values
vehicleMass : mass[kilogram]

r1.01
«RequirementConstraintBlock»
Vehicle Mass Requirement

constraints
{actualMass < requiredMass}

d="1"
Text = "The vehicle mass shall be less than
or equal to 1450 kilograms"

parameters

requiredMass : mass|kilogram] = 1450

Vehicle Example [Package] context bdd []

constra

i

nts

{actualMass ≤ requiredMass}

Id = "1"

Text = "The vehicle mass shall be less than

or equal to 1450 kilograms"

parameters

actualMass : mass[kilogram]

requiredMass : mass[kilogram] = 1450

«RequirementConstraintBlock»

Vehicle Mass Requirement

«block»

Requirement Context

va

l

ues

vehicleMass : mass[kilogram]

«block»

Vehicle

v01

r1.01

E:8Bullding Non-Normative Extensionsfor Property-Based
Requiraments

. Ty may e o i v oanrstons (o campi RS
Ve oy oy v et s ot ol
B e o ket 1y vt S

e el e g bkt) e
e

Corent s et s o ey execsed s
e] e o s o Sy
o sy s et sk e e
s i ey .] e s e el
s raers Gl eprshng ol 3 .
ey T e) R PSR o
sl ing Bt o o o e .
e b vy frte
L peny e,

o bt oty e e e b s it v
B e e A
e et b s bl el ch ik

e e gy v s g 1
e e oy o

ot progrybsd gt vy des s bt bl o
iy e e e o sl ey S
et s s o el s bt gl s
e oo vt o Ths o eyt
e el ST e bo e Conbon b
s o s v,y) P s
ot ——

