[bookmark: h.bjkt93vp7v7e]8.5 Transport level and security considerations: HTTP and Web Sockets

The PSMs in this specification can operate over an HTTP transport, a secure HTTP transport (HTTPS), a Web-Sockets transport (WS) or a secure Web-Sockets transport (WSS). Implementations of this specification shall support operation over HTTP and HTTPS, see section 8.5.1. Optionally implementations may support upgrading the connection to using WebSockets (WS) and secure WebSockets (WSS), see section 8.5.2.

[bookmark: h.k94yq7jlvmw]8.5.1 Operation over HTTP and HTTPS

The WebDDS::Client shall initiate all the HTTP or HTTPS requests.

The HTTP or HTTPS Header Content-Type field shall be set to application/dds-web+xml when using REST+XML object representations (section 8.3.4) and application/dds-web+json when using REST+JSON object representations (section 8.3.5).

Operation over HTTP does not provide communication security between the web client and the Web-Enabled DDS Service. Use of HTTP is only suitable for prototyping or within internal networks that are secured by other means. HTTPS shall be used by applications that require secure communication between a web client and the WebDDS Service.

When running over HTTP the use of a Client API Key (see section 7.3) is still required. The client's API key information shall appear in the HTTP headers using the header field with name OMG-DDS-API-Key as described in Table 7. Use of the Client API Key with HTTP does not provide security per se (unless the network and computers have been secured by other means); moreover it risks having the client API key eavesdropped or spoofed. Nevertheless including the OMG-DDS-API-Key in the headers is needed to identify the client application. It is also useful to test client application behavior and permissions prior to deployment over a secure transport. A potential approach while prototyping over HTTP would be to use a temporary Client API Key dedicated just to the prototype/test. The temporary key can be invalidated at the Web-DDS server-side once the application is deployed and replaced by a Client API Key that is never sent over an insecure transport.

When operating over HTTPS Client applications shall verify that the certificate provided by the Web-Enabled DDS service instance (the one implementing the HTTP server side) is valid before establishing a connection. This is normally done (automatically) by the standard TLS transport used by HTTPS.

All HTTPS requests shall carry the client's API key information in the HTTPS headers using the HTTPS header field named OMG-DDS-API-Key as described in Table 7.
						
[bookmark: h.6rkgve1jqeki]8.5.2 Operation over Web Sockets (WS) and Secure WebSockets (WSS)

[bookmark: h.dkf5ldfoxh0]8.5.2.1 Connection Establisment
The WebDDS::Client shall initiate the WebSocket connection advertising the web sockets’ sub-protocol “dds-web”. The WebDDS: shall accept that sub-protocol.

Non-secured web socket connections shall be identified by the URL schema: ws://<servername>[:<port>]/dds/v1/<connectionName>

Secure web-socket connections shall be identified by the URL schema:
wss://<servername>[:<port>]/dds/v1/<connectionName>

The <port> element selects an IP port number. The explicit appearance of the <port> within the URL is optional. If not specified the port number defaults to 80 for the non-secured connections (ws) and 443 for the secured connections (wss).

The <connectionName> is chosen by the WebDDS::Client and allows the WebDDS::Client to establish multiple WebSocket connections and associate different resources to each.

Secure Web-Socket (WSS) client applications shall verify that the certificate provided by the Web-Enabled DDS service instance (the one implementing the HTTP and WebSockets server side) is valid before establishing a connection. This is normally done (automatically) by the standard TLS transport used by HTTPS and WSS.

[bookmark: h.puyth63u3hlm]8.5.2.2 WebDDS messages and encoding

WebDDS::Clients can exchange the following types of messages with the WebDDS service instances: HELLO, HELLO_OK, HELLO_FAIL, REQUEST, RESPONSE, BIND, B_REQUEST, Z_REQUEST,, B_PUSH, and Z_PUSH.

All messages shall use Text Data Frames (opcode 0x1. See section 5.6 of IETF RFC 6455).

A WebDDS message may be sent in a single WebSockets frame or split into multiple
frames. Each WebSockets frame shall contain information from a single WebDDS message. All frames of a single WebDDS message shall be consecutive. That is, it is not allowed to interleave fragments from multiple WebDDS messages over a single Web Sockets connection.

[bookmark: h.4iok1tqfydq6]8.5.2.3 Initial Handshake: HELLO message

The HELLO message shall be the first message sent by the WedDDS::Client on each established WS or WSS connection. The WebDDS service shall not send any messages or process any messages over a WS/WSS connection until the HELLO message has been received on that connection.

The HELLO message shall be sent in a single WebSocket text-data frame. The format is
 the same as the Request Header Fields section in an HTTP message. That is, colon-separated string name-value pairs, each terminated by a carriage return (CR) and line feed (LF) character sequence.

The following three HTTP Header fields defined in Table 8 shall appear in the HELLO message: Accept, Content-Type, and OMG-DDS-API-Key. The possible content for those fields is as defined in Table 7. In addition there shall be a field with name “Version” and value set to “1”.
The HELLO message may contain additional vendor-specific fields.

The WebDDS service implementation shall process the HELLO message as follows:
· If any of the specified fields are missing the WebDDS service shall send a HELLO_FAIL message and close the connection.
· The Client API Key present in the field OMG-DDS-API-Key shall be validated. If validation fails the WebDDS service shall send a HELLO_FAIL message and close the connection.
· The value of the Content-Type field shall be examined. If the specified content type is not recognized or not supported the WebDDS service shall send a HELLO_FAIL message and close the connection.
· The value of the Version field shall be examined. If the specified version is not supported the WebDDS service shall send a HELLO_FAIL message and close the connection.
· If all the above checks succeed the WebDDS service shall send a HELLO_OK message.

The HELLO_FAIL message shall be sent in a single WebSocket text-data frame. The format is a single string that starts with the prefix “HELLO_FAIL:” followed the reason for the failure.

The HELLO_OK message shall be sent in a single WebSocket text-data frame. The format is a single string that starts with the prefix “HELLO_OK:” followed by vendor-specific information.

Upon receiving the HELLO_OK message the WedDDS::Client shall consider the connection successfully established.

[bookmark: h.t2wde4n76d1o]8.5.2.4 Message flow: REQUEST and RESPONSE messages

Once the WebSocket connection has been established the WebDDS::Client communicates with the WebDDS service sending REQUEST messages and receiving RESPONSE messages.

The message content for the REQUEST message is equivalent to the HTTP request messages used to map the WebDDS PIM to REST methods (see section 8.3.3) except that the REQUEST message is no longer an HTTP message and hence encodes the information slightly differently.

Similarly the message content for the RESPONSE message is equivalent to the HTTP request messages used to map the WebDDS PIM to REST methods (see section 8.3.3), albeit with slightly different encoding.

If the Content-Type specified “application/dds-web+xml” the REQUEST shall be formatted as the XML element <request> with the syntax defined in the file webdds_websockets1.xsd. Similarly the RESPONSE message shall be formatted as the XML element <response> with the syntax also defined in the file webdds_websockets1.xsd.

The XML <request> element contains up to four children: <id>, <uri>, <method> and <body>. The mapping to the REST+XML platform protocol, resources and resource representations ito the elements in the REQUEST message is defined in the table below:

Table 11 WebSockets REQUEST message for the XML platform
	WebSocket request child element
	Mapping of sub-element content to the REST+XML platform

	<id>
	This element has no correspondence in the REST+XML platform. It is a string set by the WebDDS client that can be used by the WebDDS client to relate a response to its corresponding request.

	<uri>
	Maps to the REST resource name. Corresponds to the URI column in Table 5.

	<method>
	Corresponds to the HTTP method column in Table 5.

	<body>
	Contains the request body. The contents are defined in table file, column “HTTP request and response bodies”.

The XML <response> element contains three children: <id>, <return_code>, and <body>. The mapping of the RESPONSE message to the REST+XML platform protocol, resources and resource representations is defined in the table below:

Table 12 WebSockets RESPONSE message for the XML platform
	WebSocket request child element
	Mapping of sub-element content to the REST+XML platform

	<id>
	This element has no correspondence in the REST+XML platform. It is the string set by the WebDDS client in the request. It is echoed back in the response so that the client can relate the response to its corresponding request.

	<return_code>
	This element maps directly to the ReturnCode in the WebDDS PIM. The possible values and interpretation are defined in section 7.4.1.

	<body>
	Contains the reply. The contents are defined in table file, column “HTTP request and response bodies”.

Example request to read data from a DataReader:
<request>
<id>Req-123457</id>
<uri>/applications/MyFirstShapesApplication/domain_participants/SquareReaderParticipant/subscribers/SquareSubscriber/data_readers/SquareReader</uri>
<method>GET</method>
</request>

Example request to write data to a DataWriter:
<request>
 <id>Req-123458</id> <uri>/applications/MyFirstShapesApplication/domain_participants/MyParticipant/publishers/ShapePublisher/data_writers/SquareWriter</uri>

 <method>POST</method>
 <body>
 <write_sample_seq>
 <sample>
 <write_sample_info>
 <source_timestamp>
 <sec>10</sec>
 <nanosec>20</nanosec>
 </source_timestamp>
 </write_sample_info>
 <data>
 <ShapeStruct>
 <color>YELLOW</color>
 <x>10</x>
 <y>20</y>
 </ShapeStruct>
 </data>
 </sample>
 </write_sample_seq>
 </body>
</request>

Example response to read data request:
<response>
 <id>Req-123457</id>
 <return_code>OK</return_code>
 <body>
 <read_sample_seq>
 <sample>
 <read_sample_info>
 <source_timestamp>
 <sec>10</sec>
 <nanosec>0</nanosec>
 </source_timestamp>
 <valid_data>true</valid_data>
 <instance_handle>0</instance_handle>
 <instance_state>ALIVE</instance_state>
 <sample_state>NOT_READ</sample_state>
 <view_state>NEW</view_state>
 </read_sample_info>
 <data>
 <ShapeStruct>
 <color>GREEN</color>
 <x>10</x>
 <y>20</y>
 </ShapeStruct>
 </data>
 </sample>
 </read_sample_seq>
 </body>
</response>

Example response to write data request:
<response>
 <id>Req-123458</id>
 <return_code>OK</return_code>
</response>

If the Content-Type specified application/dds-web+json the REQUEST and RESPONSE messages are encoded as JSON objects. The JSON “request” and “response” objects are obtained by applying the “Cuttlefish Transformation Rules” (section 8.3.5) to the <request> and <response> XML elements defined for content type application/dds-web+xml. Specifically the JSON REQUEST object has four properties named “id”, “uri”, “method” and “body”. The JSON RESPONSE object has three properties named: “id”, “return_code” and “body”.

The values of those properties are also JSON objects obtained by also applying the Cuttlefish transformation rules to the corresponding XML elements. These correspond to the JSON object representations defined in the WebDDS REST+JSON platform (8.3.5).

Example JSON request to read data from a DataReader:
{
 "request": {
 "id": "Req-123457",
 "uri": "/applications/MyFirstShapesApplication/domain_participants/SquareReaderParticipant/subscribers/SquareSubscriber/data_readers/SquareReader",
 "method": "GET"
 }
}

Example JSON request to write data to a DataWriter:
{
 "request": {
 "id": “Req-123458”
 "uri": “applications/MyFirstShapesApplication/domain_participants/MyParticipant/publishers/ShapePublisher/data_writers/SquareWriter”
 "method": “POST”

 "body": {
 "write_sample_seq": [
 {
 "write_sample_info": {
 "source_timestamp": {
 "sec": 10,
 "nanosec": 20
 }
 },

 "data": {
 "ShapeStruct": {
 "color": "YELLOW",
 "x": 10,
 "y": 20
 }
 }
 }
]
 }
 }
}

Example JSON response to read data request:
{
 "response": {
 "id": "Req-123457",
 "return_code": "OK",
 "body": {
 "read_sample_seq": [
 {
 "read_sample_info": {
 "source_timestamp": {
 "sec": 10,
 "nanosec": 0
 },
 "valid_data": "true",
 "instance_handle": 0,
 "instance_state": "ALIVE",
 "sample_state": "NOT_READ",
 "view_state": "NEW"
 },

 "data": {
 "ShapeStruct": {
 "color": "GREEN",
 "x": 10,
 "y": 20
 }
 }
 }
]
 }
 }
}

Example JSON response to write data request:
{
 "response": {
 "id": "Req-123458",
 "return_code": "OK"
 }
}

[bookmark: h.8702kgicgvqm]8.5.2.5 Read/Write streaming optimization

Improving performance is one of the key motivations for using WebSockets. Writing and reading data are the most time critical operations performed by a WebDDS::Client.
For this reason this specification defines an optimized protocol for the WebDDS::Client to write and receive data.

[bookmark: h.rkolfv2rdevq]8.5.2.5.1 BIND message
To enable the optimized read/write operation the WebDDS::Client must send a BIND message to associate a logical “bind_id” with the URI of a specific DataWriter or DataReader. This association saves having to send the full DataWriter or DataReader URI on each message.

When using content of type application/dds-web+xml the BIND request message shall be formatted as the XML element <bind> defined in webdds_websockets.xsd. A single BIND message may be used to bind multiple DataWriters and DataReaders.

Example binding of data writers and readers for optimized read/write using XML:

<bind>
 <bind_datawriter>
 <bind_id>MySquareWriterId</bind_id> <uri>applications/MyFirstShapesApplication/domain_participants/MyParticipant/publishers/ShapePublisher/data_writers/SquareWriter</uri>
 </bind_datawriter>

 <bind_datareader>
 <bind_id>MySquareReaderId</bind_id> <uri>/applications/MyFirstShapesApplication/domain_participants/SquareReaderParticipant/subscribers/SquareSubscriber/data_readers/SquareReader</uri>
 </bind_datareader>
</bind>

When using content of type “application/dds-web+json” the BIND message has the format of the JSON object obtained by applying the Cuttlefish XML to JSON transformation rules defined in 8.3.5.

Example binding of data writers and readers for optimized read/write using JSON:
{
 "bind": [
 {
 "bind_datawriter": {
 "bind_id" : "MySquareWriterId",
 "uri" : "applications/MyFirstShapesApplication/domain_participants/MyParticipant/publishers/ShapePublisher/data_writers/SquareWriter"
 }
 },

 {
 "bind_datareader": {
 "bind_id" : "MySquareReaderId",
 "uri" : "/applications/MyFirstShapesApplication/domain_participants/SquareReaderParticipant/subscribers/SquareSubscriber/data_readers/SquareReader""
 }
 }
]
}

To cancel the binding of a previously-bound resource the WebDDS::Client shall send a BIND message with the same bind_id and an empty URI.

[bookmark: h.qbv7lf7qzbsx]8.5.2.5.2 B_REQUEST message

Once a DataWriter has been bound the WebDDS::Client can write data to the DataWriter using the optimized B_REQUEST message.

When using content of type “application/dds-web+xml” the B_REQUEST message shall be formatted as the XML element <b_req> defined in webdds_websockets.xsd.

When using content of type “application/dds-web+json” the B_REQUEST message shall be formatted as the JSON object obtained by applying the Cuttlefish XML to JSON transformation rules defined in 8.3.5 to the <b_req> XML element.

The B_REQUEST message contains a bind_id whose value must correspond to a previously-specified bind_id in a BIND message. This identifies the resource that is being referenced in the request. The B_REQUEST message also contains a “body” element that is set with the same content that would have been used for the body of the on-optimized REQUEST message.

Example writing data with the optimized B_REQUEST using XML:

<b_req>
 <bind_id>MySquareWriterId</bind_id>
 <body>
 <write_sample_seq>
 <sample>
 <write_sample_info>
 <source_timestamp>
 <sec>10</sec>
 <nanosec>20</nanosec>
 </source_timestamp>
 </write_sample_info>
 <data>
 <ShapeStruct>
 <color>YELLOW</color>
 <x>10</x>
 <y>20</y>
 </ShapeStruct>
 </data>
 </sample>
 </write_sample_seq>
 </body>
</b_req>

Example writing data with the optimized B_REQUEST using JSON:

{
 "b_req" : {
 "bind_id" : "MySquareWriterId",
 "body" : {
 "write_sample_seq" : [
 {
 "write_sample_info" : {
 "source_timestamp" : {
 "sec" : 10,
 "nanosec" : 20
 }
 },
 "data" {
 "ShapeStruct" : {
 "color" : "YELLOW",
 "x" : 10,
 "y" : 20
 }
 }
 }
]
 }
 }
}

[bookmark: h.e91cfmcp0gxh]8.5.32.45.3 Z_REQUEST message

The Z_REQUEST message may be used as an alternative “compressed” version of the B_REQUEST. The use of the compressed version uses less space and therefore increases performance.
The only difference between the Z_REQUEST message and the corresponding B_REQUEST is that all XML element names except those nested inside the <data> element have their name abbreviated:
· Single-word element names defined as those with no underscore character (‘_’) shall be abbreviated to just the first character of the name.
· Element names with an “_” characters shall be abbreviated to the first letter followed by the first letter that appears after each underscore character.
[bookmark: _GoBack]For example, element name <body> is abbreviated to and element name <write_sample_seq> is abbreviated to <wss>. The same abbreviation is applied to the JSON key names that correspond to the abbreviated XML element names.

Example writing data with the optimized Z_REQUEST using XML:

 <bi>MySquareWriterId</bi>

 <wss>
 <s>
 <wsi>
 <st>
 <s>10</s>
 <n>20</n>
 </st>
 </wsi>
 <d>
 <ShapeStruct>
 <color>YELLOW</color>
 <x>10</x>
 <y>20</y>
 </ShapeStruct>
 </d>
 </s>
 </wsi>

</br>

Example writing data with the optimized Z_REQUEST using JSON:

{
 "br" : {
 "bi" : "MySquareWriterId",
 "b" : {
 "wss" : [
 {
 "wsi" : {
 "st" : {
 "s" : 10,
 "n" : 20
 }
 },
 "d" {
 "ShapeStruct" : {
 "color" : "YELLOW",
 "x" : 10,
 "y" : 20
 }
 }
 }
]
 }
 }
}

[bookmark: h.706zx1q2cnto]8.5.32.45.4 B_PUSH message

Receiving data is one of the most time critical operations performed by a WebDDS::Client. To minimize the latency on the data received it essential to provide a mechanism for the WebDDS service to “push” data to the WebDDS::Client when it becomes available. That way the client avoids having to “poll” for data. For this reason this specification defines the B_PUSH message.

Once a DataReader has been bound to a WebSocket the WebDDS service can push data received on the DataReader to the WebDDS::Client over the WebSocket using the B_PUSH message.

When using content of type application/dds-web+xml the B_PUSH message shall be formatted as the XML element <b_push> defined in webdds_websockets.xsd.

When using content of type application/dds-web+json the B_PUSH message shall be formatted as the JSON object by applying the Cuttlefish XML to JSON transformation rules defined in 8.3.5 to the <b_push> element.

The B_PUSH message contains a bind_id whose value must correspond to a previously-specified bind_id in a BIND message. This identifies the resource that is being referenced in the push. In this case it corresponds to a DataReader. The B_PUSH message also contains a “body” element that is set with the same content that would have been used for the body of the response message that would have been sent if the application had issued request using the “GET” method on that resource.

Example data being pushed from the WebDDS service with the B_PUSH message using XML:
<b_push>
 <bind_id>MySquareReaderId</bind_id>
 <body>
 <read_sample_seq>
 <sample>
 <read_sample_info>
 <source_timestamp>
 <sec>10</sec>
 <nanosec>0</nanosec>
 </source_timestamp>
 <valid_data>true</valid_data>
 <instance_handle>0</instance_handle>
 <instance_state>ALIVE</instance_state>
 <sample_state>NOT_READ</sample_state>
 <view_state>NEW</view_state>
 </read_sample_info>
 <data>
 <ShapeStruct>
 <color>GREEN</color>
 <x>10</x>
 <y>20</y>
 </ShapeStruct>
 </data>
 </sample>
 </read_sample_seq>
 </body>
</b_push>

Example data being pushed from the WebDDS service with the B_PUSH message using JSON:

{
 "b_push": {
 "bind_id": "MySquareReaderId",
 "body": {
 "read_sample_seq": [
 {
 "read_sample_info": {
 "source_timestamp": {
 "sec": 10,
 "nanosec": 0
 },
 "valid_data": "true",
 "instance_handle": 0,
 "instance_state": "ALIVE",
 "sample_state": "NOT_READ",
 "view_state": "NEW"
 },
 "data": {
 "ShapeStruct": {
 "color": "GREEN",
 "x": 10,
 "y": 20
 }
 }
 }
]
 }
 }
}

[bookmark: h.v7s7wlwk49xu]8.5.2.5.5 Z_PUSH message

The Z_PUSH message may be used as an alternative “compressed” version of the B_PUSH. Similar to the motivation for the Z_REQUEST the use of the compressed version of B_PUSH uses less space and therefore increases performance.

The Z_PUSH message is constructed from the B_PUSH message applying the same rules used to construct the Z_REQUEST message from the B_REQUEST message.

 Example data being pushed from the WebDDS service with the B_PUSH message using XML:
<bp>
 <bi>MySquareReaderId</bi>

 <rss>
 <s>
 <rsi>
 <st>
 <s>10</s>
 <n>0</n>
 </st>
 <vd>true</vd>
 <ih>0</ih>
 <is>ALIVE</is>
 <ss>NOT_READ</st>
 <vs>NEW</vs>
 </rsi>
 <d>
 <ShapeStruct>
 <color>GREEN</color>
 <x>10</x>
 <y>20</y>
 </ShapeStruct>
 </d>
 </s>
 </rss>

</bp>

Example data being pushed from the WebDDS service with the B_PUSH message using JSON:

{
 "bp": {
 "bi": "MySquareReaderId",
 "b": {
 "rss": [
 {
 "rsi": {
 "st": {
 "s": 10,
 "n": 0
 },
 "vd": "true",
 "ih": 0,
 "is": "ALIVE",
 "ss": "NOT_READ",
 "vs": "NEW"
 },
 "d": {
 "ShapeStruct": {
 "color": "GREEN",
 "x": 10,
 "y": 20
 }
 }
 }
]
 }
 }
}

[bookmark: h.3ouun3yfhivc]8.5.3 IANA Considerations

This specification requests IANA to register the WebSocket DDS-WEB sub-protocol under the “WebSocket Subprotocol Name” registry with the following data:
[bookmark: h.ysq6qmbp3qed]Table 13 - IANA WebSocket Identifier
	Subprotocol Identifier
	dds-web

	Subprotocol Common Name
	dds-web

	Subprotocol Definition
	http://www.omg.org/spec/DDS-WEB/

